Existence of solutions for Hardy-Sobolev-Maz'ya systems

The main goal of this article is to investigate the existence of solutions for the Hardy-Sobolev-Maz'ya system $$displaylines{ -Delta u-lambda frac{u}{|y|^2}=frac{|v|^{p_t-1}}{|y|^t}v,quad hbox{in }Omega,cr -Delta v-lambda frac{v}{|y|^2}=frac{|u|^{p_s-1}}{|y|^s}u,quad hbox{in }Omega,cr u...

Full description

Bibliographic Details
Main Authors: Jian Wang, Xin Wei
Format: Article
Language:English
Published: Texas State University 2012-07-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2012/115/abstr.html
_version_ 1831520697652871168
author Jian Wang
Xin Wei
author_facet Jian Wang
Xin Wei
author_sort Jian Wang
collection DOAJ
description The main goal of this article is to investigate the existence of solutions for the Hardy-Sobolev-Maz'ya system $$displaylines{ -Delta u-lambda frac{u}{|y|^2}=frac{|v|^{p_t-1}}{|y|^t}v,quad hbox{in }Omega,cr -Delta v-lambda frac{v}{|y|^2}=frac{|u|^{p_s-1}}{|y|^s}u,quad hbox{in }Omega,cr u=v=0,quad hbox{on }partial Omega }$$ where $0inOmega$ which is a bounded, open and smooth subset of $mathbb{R}^kimes mathbb{R}^{N-k}$, $2leq k<N$. The non-existence of classical positive solutions is obtained by a variational identity and the existence result by a linking theorem.
first_indexed 2024-12-13T17:36:34Z
format Article
id doaj.art-37de78048f7a480686942543d45acecd
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-13T17:36:34Z
publishDate 2012-07-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-37de78048f7a480686942543d45acecd2022-12-21T23:36:53ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912012-07-012012115,114Existence of solutions for Hardy-Sobolev-Maz'ya systemsJian WangXin WeiThe main goal of this article is to investigate the existence of solutions for the Hardy-Sobolev-Maz'ya system $$displaylines{ -Delta u-lambda frac{u}{|y|^2}=frac{|v|^{p_t-1}}{|y|^t}v,quad hbox{in }Omega,cr -Delta v-lambda frac{v}{|y|^2}=frac{|u|^{p_s-1}}{|y|^s}u,quad hbox{in }Omega,cr u=v=0,quad hbox{on }partial Omega }$$ where $0inOmega$ which is a bounded, open and smooth subset of $mathbb{R}^kimes mathbb{R}^{N-k}$, $2leq k<N$. The non-existence of classical positive solutions is obtained by a variational identity and the existence result by a linking theorem.http://ejde.math.txstate.edu/Volumes/2012/115/abstr.htmlVariational identity(PS) conditionlinking theoremHardy-Sobolev-Maz'ya inequality
spellingShingle Jian Wang
Xin Wei
Existence of solutions for Hardy-Sobolev-Maz'ya systems
Electronic Journal of Differential Equations
Variational identity
(PS) condition
linking theorem
Hardy-Sobolev-Maz'ya inequality
title Existence of solutions for Hardy-Sobolev-Maz'ya systems
title_full Existence of solutions for Hardy-Sobolev-Maz'ya systems
title_fullStr Existence of solutions for Hardy-Sobolev-Maz'ya systems
title_full_unstemmed Existence of solutions for Hardy-Sobolev-Maz'ya systems
title_short Existence of solutions for Hardy-Sobolev-Maz'ya systems
title_sort existence of solutions for hardy sobolev maz ya systems
topic Variational identity
(PS) condition
linking theorem
Hardy-Sobolev-Maz'ya inequality
url http://ejde.math.txstate.edu/Volumes/2012/115/abstr.html
work_keys_str_mv AT jianwang existenceofsolutionsforhardysobolevmazyasystems
AT xinwei existenceofsolutionsforhardysobolevmazyasystems