Applying Fully Convolutional Architectures for Semantic Segmentation of a Single Tree Species in Urban Environment on High Resolution UAV Optical Imagery

This study proposes and evaluates five deep fully convolutional networks (FCNs) for the semantic segmentation of a single tree species: SegNet, U-Net, FC-DenseNet, and two DeepLabv3+ variants. The performance of the FCN designs is evaluated experimentally in terms of classification accuracy and comp...

Full description

Bibliographic Details
Main Authors: Daliana Lobo Torres, Raul Queiroz Feitosa, Patrick Nigri Happ, Laura Elena Cué La Rosa, José Marcato Junior, José Martins, Patrik Olã Bressan, Wesley Nunes Gonçalves, Veraldo Liesenberg
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/20/2/563
Description
Summary:This study proposes and evaluates five deep fully convolutional networks (FCNs) for the semantic segmentation of a single tree species: SegNet, U-Net, FC-DenseNet, and two DeepLabv3+ variants. The performance of the FCN designs is evaluated experimentally in terms of classification accuracy and computational load. We also verify the benefits of fully connected conditional random fields (CRFs) as a post-processing step to improve the segmentation maps. The analysis is conducted on a set of images captured by an RGB camera aboard a UAV flying over an urban area. The dataset also contains a mask that indicates the occurrence of an endangered species called <i>Dipteryx alata</i> Vogel, also known as cumbaru, taken as the species to be identified. The experimental analysis shows the effectiveness of each design and reports average overall accuracy ranging from 88.9% to 96.7%, an F1-score between 87.0% and 96.1%, and IoU from 77.1% to 92.5%. We also realize that CRF consistently improves the performance, but at a high computational cost.
ISSN:1424-8220