Sex, Age and Stature Affects Neck Biomechanical Responses in Frontal and Rear Impacts Assessed Using Finite Element Head and Neck Models

The increased incidence of injury demonstrated in epidemiological data for the elderly population, and females compared to males, has not been fully understood in the context of the biomechanical response to impact. A contributing factor to these differences in injury risk could be the variation in...

Full description

Bibliographic Details
Main Authors: M. A Corrales, D. S Cronin
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-09-01
Series:Frontiers in Bioengineering and Biotechnology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fbioe.2021.681134/full
_version_ 1829492473019236352
author M. A Corrales
D. S Cronin
author_facet M. A Corrales
D. S Cronin
author_sort M. A Corrales
collection DOAJ
description The increased incidence of injury demonstrated in epidemiological data for the elderly population, and females compared to males, has not been fully understood in the context of the biomechanical response to impact. A contributing factor to these differences in injury risk could be the variation in geometry between young and aged persons and between males and females. In this study, a new methodology, coupling a CAD and a repositioning software, was developed to reposture an existing Finite element neck while retaining a high level of mesh quality. A 5th percentile female aged neck model (F0575YO) and a 50th percentile male aged neck model (M5075YO) were developed from existing young (F0526YO and M5026YO) neck models (Global Human Body Models Consortium v5.1). The aged neck models included an increased cervical lordosis and an increase in the facet joint angles, as reported in the literature. The young and the aged models were simulated in frontal (2, 8, and 15 g) and rear (3, 7, and 10 g) impacts. The responses were compared using head and relative facet joint kinematics, and nominal intervertebral disc shear strain. In general, the aged models predicted higher tissue deformations, although the head kinematics were similar for all models. In the frontal impact, only the M5075YO model predicted hard tissue failure, attributed to the combined effect of the more anteriorly located head with age, when compared to the M5026YO, and greater neck length relative to the female models. In the rear impacts, the F0575YO model predicted higher relative facet joint shear compared to the F0526YO, and higher relative facet joint rotation and nominal intervertebral disc strain compared to the M5075YO. When comparing the male models, the relative facet joint kinematics predicted by the M5026YO and M5075YO were similar. The contrast in response between the male and female models in the rear impacts was attributed to the higher lordosis and facet angle in females compared to males. Epidemiological data reported that females were more likely to sustain Whiplash Associated Disorders in rear impacts compared to males, and that injury risk increases with age, in agreement with the findings in the present study. This study demonstrated that, although the increased lordosis and facet angle did not affect the head kinematics, changes at the tissue level were considerable (e.g., 26% higher relative facet shear in the female neck compared to the male, for rear impact) and relatable to the epidemiology. Future work will investigate tissue damage and failure through the incorporation of aged material properties and muscle activation.
first_indexed 2024-12-16T06:15:41Z
format Article
id doaj.art-37f30967b58345f5be8b6086f4018b18
institution Directory Open Access Journal
issn 2296-4185
language English
last_indexed 2024-12-16T06:15:41Z
publishDate 2021-09-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Bioengineering and Biotechnology
spelling doaj.art-37f30967b58345f5be8b6086f4018b182022-12-21T22:41:16ZengFrontiers Media S.A.Frontiers in Bioengineering and Biotechnology2296-41852021-09-01910.3389/fbioe.2021.681134681134Sex, Age and Stature Affects Neck Biomechanical Responses in Frontal and Rear Impacts Assessed Using Finite Element Head and Neck ModelsM. A CorralesD. S CroninThe increased incidence of injury demonstrated in epidemiological data for the elderly population, and females compared to males, has not been fully understood in the context of the biomechanical response to impact. A contributing factor to these differences in injury risk could be the variation in geometry between young and aged persons and between males and females. In this study, a new methodology, coupling a CAD and a repositioning software, was developed to reposture an existing Finite element neck while retaining a high level of mesh quality. A 5th percentile female aged neck model (F0575YO) and a 50th percentile male aged neck model (M5075YO) were developed from existing young (F0526YO and M5026YO) neck models (Global Human Body Models Consortium v5.1). The aged neck models included an increased cervical lordosis and an increase in the facet joint angles, as reported in the literature. The young and the aged models were simulated in frontal (2, 8, and 15 g) and rear (3, 7, and 10 g) impacts. The responses were compared using head and relative facet joint kinematics, and nominal intervertebral disc shear strain. In general, the aged models predicted higher tissue deformations, although the head kinematics were similar for all models. In the frontal impact, only the M5075YO model predicted hard tissue failure, attributed to the combined effect of the more anteriorly located head with age, when compared to the M5026YO, and greater neck length relative to the female models. In the rear impacts, the F0575YO model predicted higher relative facet joint shear compared to the F0526YO, and higher relative facet joint rotation and nominal intervertebral disc strain compared to the M5075YO. When comparing the male models, the relative facet joint kinematics predicted by the M5026YO and M5075YO were similar. The contrast in response between the male and female models in the rear impacts was attributed to the higher lordosis and facet angle in females compared to males. Epidemiological data reported that females were more likely to sustain Whiplash Associated Disorders in rear impacts compared to males, and that injury risk increases with age, in agreement with the findings in the present study. This study demonstrated that, although the increased lordosis and facet angle did not affect the head kinematics, changes at the tissue level were considerable (e.g., 26% higher relative facet shear in the female neck compared to the male, for rear impact) and relatable to the epidemiology. Future work will investigate tissue damage and failure through the incorporation of aged material properties and muscle activation.https://www.frontiersin.org/articles/10.3389/fbioe.2021.681134/fullneck biomechanical responseage effectssex effectsfinite element modelfrontal impactstature effects
spellingShingle M. A Corrales
D. S Cronin
Sex, Age and Stature Affects Neck Biomechanical Responses in Frontal and Rear Impacts Assessed Using Finite Element Head and Neck Models
Frontiers in Bioengineering and Biotechnology
neck biomechanical response
age effects
sex effects
finite element model
frontal impact
stature effects
title Sex, Age and Stature Affects Neck Biomechanical Responses in Frontal and Rear Impacts Assessed Using Finite Element Head and Neck Models
title_full Sex, Age and Stature Affects Neck Biomechanical Responses in Frontal and Rear Impacts Assessed Using Finite Element Head and Neck Models
title_fullStr Sex, Age and Stature Affects Neck Biomechanical Responses in Frontal and Rear Impacts Assessed Using Finite Element Head and Neck Models
title_full_unstemmed Sex, Age and Stature Affects Neck Biomechanical Responses in Frontal and Rear Impacts Assessed Using Finite Element Head and Neck Models
title_short Sex, Age and Stature Affects Neck Biomechanical Responses in Frontal and Rear Impacts Assessed Using Finite Element Head and Neck Models
title_sort sex age and stature affects neck biomechanical responses in frontal and rear impacts assessed using finite element head and neck models
topic neck biomechanical response
age effects
sex effects
finite element model
frontal impact
stature effects
url https://www.frontiersin.org/articles/10.3389/fbioe.2021.681134/full
work_keys_str_mv AT macorrales sexageandstatureaffectsneckbiomechanicalresponsesinfrontalandrearimpactsassessedusingfiniteelementheadandneckmodels
AT dscronin sexageandstatureaffectsneckbiomechanicalresponsesinfrontalandrearimpactsassessedusingfiniteelementheadandneckmodels