Numerical Simulation on Dynamic Behavior of Slab–Column Connections Subjected to Blast Loads

Although many studies on the blast-resistant performance of structures have focused mainly on single members such as beams and columns, there is little research on the behavior of joints that are subjected to blast loads. In this study, the structural behavior of a slab–column connection subjected t...

Full description

Bibliographic Details
Main Authors: Kwang Mo Lim, Taek Hee Han, Joo Ha Lee
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/16/7573
Description
Summary:Although many studies on the blast-resistant performance of structures have focused mainly on single members such as beams and columns, there is little research on the behavior of joints that are subjected to blast loads. In this study, the structural behavior of a slab–column connection subjected to blast load was investigated using a numerical analysis method. LS-DYNA was used as a finite element analysis program, and in order to improve the accuracy of numerical analysis, mesh size, material model, and simulation method of blast load were determined through preliminary analysis. The effect of different restraints of the joints, depending on the position of the columns in the slab, on the blast resistance performance was investigated. As a result, the highly confined slab-interior column connection showed better behavior than other edge and corner columns. The drop panel installed between the lower column and the slab was effective in improving the blast-resistance performance of the slab–column connection. For a more accurate evaluation of blast resistance performance, it was suggested that various evaluation factors such as ductility ratio, reinforcing stress, and concrete fracture area can be considered along with the support rotation, which is an important evaluation factor suggested by many standards.
ISSN:2076-3417