Crop growth and soil water fluxes at erosion‐affected arable sites: Using weighing lysimeter data for model intercomparison

Abstract Agroecosystem models need to reliably simulate all biophysical processes that control crop growth, particularly the soil water fluxes and nutrient dynamics. As a result of the erosion history, truncated and colluvial soil profiles coexist in arable fields. The erosion‐affected field‐scale s...

Full description

Bibliographic Details
Main Authors: Jannis Groh, Efstathios Diamantopoulos, Xiaohong Duan, Frank Ewert, Michael Herbst, Maja Holbak, Bahareh Kamali, Kurt‐Christian Kersebaum, Matthias Kuhnert, Gunnar Lischeid, Claas Nendel, Eckart Priesack, Jörg Steidl, Michael Sommer, Thomas Pütz, Harry Vereecken, Evelyn Wallor, Tobias K.D. Weber, Martin Wegehenkel, Lutz Weihermüller, Horst H. Gerke
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Vadose Zone Journal
Online Access:https://doi.org/10.1002/vzj2.20058
_version_ 1818453150602887168
author Jannis Groh
Efstathios Diamantopoulos
Xiaohong Duan
Frank Ewert
Michael Herbst
Maja Holbak
Bahareh Kamali
Kurt‐Christian Kersebaum
Matthias Kuhnert
Gunnar Lischeid
Claas Nendel
Eckart Priesack
Jörg Steidl
Michael Sommer
Thomas Pütz
Harry Vereecken
Evelyn Wallor
Tobias K.D. Weber
Martin Wegehenkel
Lutz Weihermüller
Horst H. Gerke
author_facet Jannis Groh
Efstathios Diamantopoulos
Xiaohong Duan
Frank Ewert
Michael Herbst
Maja Holbak
Bahareh Kamali
Kurt‐Christian Kersebaum
Matthias Kuhnert
Gunnar Lischeid
Claas Nendel
Eckart Priesack
Jörg Steidl
Michael Sommer
Thomas Pütz
Harry Vereecken
Evelyn Wallor
Tobias K.D. Weber
Martin Wegehenkel
Lutz Weihermüller
Horst H. Gerke
author_sort Jannis Groh
collection DOAJ
description Abstract Agroecosystem models need to reliably simulate all biophysical processes that control crop growth, particularly the soil water fluxes and nutrient dynamics. As a result of the erosion history, truncated and colluvial soil profiles coexist in arable fields. The erosion‐affected field‐scale soil spatial heterogeneity may limit agroecosystem model predictions. The objective was to identify the variation in the importance of soil properties and soil profile modifications in agroecosystem models for both agronomic and environmental performance. Four lysimeters with different soil types were used that cover the range of soil variability in an erosion‐affected hummocky agricultural landscape. Twelve models were calibrated on crop phenological stages, and model performance was tested against observed grain yield, aboveground biomass, leaf area index, actual evapotranspiration, drainage, and soil water content. Despite considering identical input data, the predictive capability among models was highly diverse. Neither a single crop model nor the multi‐model mean was able to capture the observed differences between the four soil profiles in agronomic and environmental variables. The model's sensitivity to soil‐related parameters was apparently limited and dependent on model structure and parameterization. Information on phenology alone seemed insufficient to calibrate crop models. The results demonstrated model‐specific differences in the impact of soil variability and suggested that soil matters in predictive agroecosystem models. Soil processes need to receive greater attention in field‐scale agroecosystem modeling; high‐precision weighable lysimeters can provide valuable data for improving the description of soil–vegetation–atmosphere process in the tested models.
first_indexed 2024-12-14T21:34:25Z
format Article
id doaj.art-37f52fd485ce4b8d83f87675b91b9995
institution Directory Open Access Journal
issn 1539-1663
language English
last_indexed 2024-12-14T21:34:25Z
publishDate 2020-01-01
publisher Wiley
record_format Article
series Vadose Zone Journal
spelling doaj.art-37f52fd485ce4b8d83f87675b91b99952022-12-21T22:46:36ZengWileyVadose Zone Journal1539-16632020-01-01191n/an/a10.1002/vzj2.20058Crop growth and soil water fluxes at erosion‐affected arable sites: Using weighing lysimeter data for model intercomparisonJannis Groh0Efstathios Diamantopoulos1Xiaohong Duan2Frank Ewert3Michael Herbst4Maja Holbak5Bahareh Kamali6Kurt‐Christian Kersebaum7Matthias Kuhnert8Gunnar Lischeid9Claas Nendel10Eckart Priesack11Jörg Steidl12Michael Sommer13Thomas Pütz14Harry Vereecken15Evelyn Wallor16Tobias K.D. Weber17Martin Wegehenkel18Lutz Weihermüller19Horst H. Gerke20Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg GermanyDep. of Plant and Environmental Science Univ. of Copenhagen Copenhagen DenmarkHelmholtz Zentrum München‐German Research Center for Environmental Health Neuherberg GermanyLeibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg GermanyForschungszentrum Jülich Agrosphere Institute of Bio‐ and Geoscience IBG‐3 Jülich GermanyDep. of Plant and Environmental Science Univ. of Copenhagen Copenhagen DenmarkLeibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg GermanyLeibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg GermanyInstitute of Biological and Environmental Science Univ. of Aberdeen Aberdeen UKLeibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg GermanyLeibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg GermanyHelmholtz Zentrum München‐German Research Center for Environmental Health Neuherberg GermanyLeibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg GermanyLeibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg GermanyForschungszentrum Jülich Agrosphere Institute of Bio‐ and Geoscience IBG‐3 Jülich GermanyForschungszentrum Jülich Agrosphere Institute of Bio‐ and Geoscience IBG‐3 Jülich GermanyLeibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg GermanyInstitute of Soil Science and Land Evaluation Univ. of Hohenheim Stuttgart GermanyLeibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg GermanyForschungszentrum Jülich Agrosphere Institute of Bio‐ and Geoscience IBG‐3 Jülich GermanyLeibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg GermanyAbstract Agroecosystem models need to reliably simulate all biophysical processes that control crop growth, particularly the soil water fluxes and nutrient dynamics. As a result of the erosion history, truncated and colluvial soil profiles coexist in arable fields. The erosion‐affected field‐scale soil spatial heterogeneity may limit agroecosystem model predictions. The objective was to identify the variation in the importance of soil properties and soil profile modifications in agroecosystem models for both agronomic and environmental performance. Four lysimeters with different soil types were used that cover the range of soil variability in an erosion‐affected hummocky agricultural landscape. Twelve models were calibrated on crop phenological stages, and model performance was tested against observed grain yield, aboveground biomass, leaf area index, actual evapotranspiration, drainage, and soil water content. Despite considering identical input data, the predictive capability among models was highly diverse. Neither a single crop model nor the multi‐model mean was able to capture the observed differences between the four soil profiles in agronomic and environmental variables. The model's sensitivity to soil‐related parameters was apparently limited and dependent on model structure and parameterization. Information on phenology alone seemed insufficient to calibrate crop models. The results demonstrated model‐specific differences in the impact of soil variability and suggested that soil matters in predictive agroecosystem models. Soil processes need to receive greater attention in field‐scale agroecosystem modeling; high‐precision weighable lysimeters can provide valuable data for improving the description of soil–vegetation–atmosphere process in the tested models.https://doi.org/10.1002/vzj2.20058
spellingShingle Jannis Groh
Efstathios Diamantopoulos
Xiaohong Duan
Frank Ewert
Michael Herbst
Maja Holbak
Bahareh Kamali
Kurt‐Christian Kersebaum
Matthias Kuhnert
Gunnar Lischeid
Claas Nendel
Eckart Priesack
Jörg Steidl
Michael Sommer
Thomas Pütz
Harry Vereecken
Evelyn Wallor
Tobias K.D. Weber
Martin Wegehenkel
Lutz Weihermüller
Horst H. Gerke
Crop growth and soil water fluxes at erosion‐affected arable sites: Using weighing lysimeter data for model intercomparison
Vadose Zone Journal
title Crop growth and soil water fluxes at erosion‐affected arable sites: Using weighing lysimeter data for model intercomparison
title_full Crop growth and soil water fluxes at erosion‐affected arable sites: Using weighing lysimeter data for model intercomparison
title_fullStr Crop growth and soil water fluxes at erosion‐affected arable sites: Using weighing lysimeter data for model intercomparison
title_full_unstemmed Crop growth and soil water fluxes at erosion‐affected arable sites: Using weighing lysimeter data for model intercomparison
title_short Crop growth and soil water fluxes at erosion‐affected arable sites: Using weighing lysimeter data for model intercomparison
title_sort crop growth and soil water fluxes at erosion affected arable sites using weighing lysimeter data for model intercomparison
url https://doi.org/10.1002/vzj2.20058
work_keys_str_mv AT jannisgroh cropgrowthandsoilwaterfluxesaterosionaffectedarablesitesusingweighinglysimeterdataformodelintercomparison
AT efstathiosdiamantopoulos cropgrowthandsoilwaterfluxesaterosionaffectedarablesitesusingweighinglysimeterdataformodelintercomparison
AT xiaohongduan cropgrowthandsoilwaterfluxesaterosionaffectedarablesitesusingweighinglysimeterdataformodelintercomparison
AT frankewert cropgrowthandsoilwaterfluxesaterosionaffectedarablesitesusingweighinglysimeterdataformodelintercomparison
AT michaelherbst cropgrowthandsoilwaterfluxesaterosionaffectedarablesitesusingweighinglysimeterdataformodelintercomparison
AT majaholbak cropgrowthandsoilwaterfluxesaterosionaffectedarablesitesusingweighinglysimeterdataformodelintercomparison
AT baharehkamali cropgrowthandsoilwaterfluxesaterosionaffectedarablesitesusingweighinglysimeterdataformodelintercomparison
AT kurtchristiankersebaum cropgrowthandsoilwaterfluxesaterosionaffectedarablesitesusingweighinglysimeterdataformodelintercomparison
AT matthiaskuhnert cropgrowthandsoilwaterfluxesaterosionaffectedarablesitesusingweighinglysimeterdataformodelintercomparison
AT gunnarlischeid cropgrowthandsoilwaterfluxesaterosionaffectedarablesitesusingweighinglysimeterdataformodelintercomparison
AT claasnendel cropgrowthandsoilwaterfluxesaterosionaffectedarablesitesusingweighinglysimeterdataformodelintercomparison
AT eckartpriesack cropgrowthandsoilwaterfluxesaterosionaffectedarablesitesusingweighinglysimeterdataformodelintercomparison
AT jorgsteidl cropgrowthandsoilwaterfluxesaterosionaffectedarablesitesusingweighinglysimeterdataformodelintercomparison
AT michaelsommer cropgrowthandsoilwaterfluxesaterosionaffectedarablesitesusingweighinglysimeterdataformodelintercomparison
AT thomasputz cropgrowthandsoilwaterfluxesaterosionaffectedarablesitesusingweighinglysimeterdataformodelintercomparison
AT harryvereecken cropgrowthandsoilwaterfluxesaterosionaffectedarablesitesusingweighinglysimeterdataformodelintercomparison
AT evelynwallor cropgrowthandsoilwaterfluxesaterosionaffectedarablesitesusingweighinglysimeterdataformodelintercomparison
AT tobiaskdweber cropgrowthandsoilwaterfluxesaterosionaffectedarablesitesusingweighinglysimeterdataformodelintercomparison
AT martinwegehenkel cropgrowthandsoilwaterfluxesaterosionaffectedarablesitesusingweighinglysimeterdataformodelintercomparison
AT lutzweihermuller cropgrowthandsoilwaterfluxesaterosionaffectedarablesitesusingweighinglysimeterdataformodelintercomparison
AT horsthgerke cropgrowthandsoilwaterfluxesaterosionaffectedarablesitesusingweighinglysimeterdataformodelintercomparison