Klasterisasi Kerusakan Bearing Motor Induksi 3 Fasa Menggunakan Metode Transformasi Wavelet Diskrit dan K-Medoids

The 3 phase induction motor is a reliable and strong motor also has cheap price. However induction motor are also vulnerable, from the result of survey conducted by Electric Power Research Institute (EPRI), there are 41% cases of damage occur in the bearing caused by working environment condition, b...

Full description

Bibliographic Details
Main Authors: Eska Rizqi Naufal, Gigih Priyandoko, Fachrudin Hunaini
Format: Article
Language:Indonesian
Published: Department of Electrical Engineering, Faculty of Engineering, Tanjungpura University 2020-10-01
Series:Elkha: Jurnal Teknik Elektro
Subjects:
Online Access:https://jurnal.untan.ac.id/index.php/Elkha/article/view/41511
_version_ 1818115476891369472
author Eska Rizqi Naufal
Gigih Priyandoko
Fachrudin Hunaini
author_facet Eska Rizqi Naufal
Gigih Priyandoko
Fachrudin Hunaini
author_sort Eska Rizqi Naufal
collection DOAJ
description The 3 phase induction motor is a reliable and strong motor also has cheap price. However induction motor are also vulnerable, from the result of survey conducted by Electric Power Research Institute (EPRI), there are 41% cases of damage occur in the bearing caused by working environment condition, bearing age, and several other factors. Bearing fault is not easily to identified, with applying the data extraction method using the Discrete Wavelet Transform (DWT) and the K-Medoids clustering method will facilitate the identification process. The extraction method will pass the data in the form of current signals into the digital filter (Low Pass Filter and High Pass Filter) to be mapped into the region of frequency and time simultaneously, and clustering method will group data based on certain characteristics. Based on the clustering tests that have been done on the 3 phase induction motor current signal data with 3 bearing conditions, the Discrete Wavelet Transformation with mother wavelet bior1.1 decomposition level 2 and K-Medoids produce an accuracy rate of 86.8%.
first_indexed 2024-12-11T04:07:14Z
format Article
id doaj.art-37f854a0ae114cb89d06a76f77e0f554
institution Directory Open Access Journal
issn 1858-1463
2580-6807
language Indonesian
last_indexed 2024-12-11T04:07:14Z
publishDate 2020-10-01
publisher Department of Electrical Engineering, Faculty of Engineering, Tanjungpura University
record_format Article
series Elkha: Jurnal Teknik Elektro
spelling doaj.art-37f854a0ae114cb89d06a76f77e0f5542022-12-22T01:21:29ZindDepartment of Electrical Engineering, Faculty of Engineering, Tanjungpura UniversityElkha: Jurnal Teknik Elektro1858-14632580-68072020-10-01122546110.26418/elkha.v12i2.4151130318Klasterisasi Kerusakan Bearing Motor Induksi 3 Fasa Menggunakan Metode Transformasi Wavelet Diskrit dan K-MedoidsEska Rizqi Naufal0Gigih Priyandoko1Fachrudin Hunaini2Universitas Widyagama MalangUniversitas Widyagama MalangUniversitas Widyagama MalangThe 3 phase induction motor is a reliable and strong motor also has cheap price. However induction motor are also vulnerable, from the result of survey conducted by Electric Power Research Institute (EPRI), there are 41% cases of damage occur in the bearing caused by working environment condition, bearing age, and several other factors. Bearing fault is not easily to identified, with applying the data extraction method using the Discrete Wavelet Transform (DWT) and the K-Medoids clustering method will facilitate the identification process. The extraction method will pass the data in the form of current signals into the digital filter (Low Pass Filter and High Pass Filter) to be mapped into the region of frequency and time simultaneously, and clustering method will group data based on certain characteristics. Based on the clustering tests that have been done on the 3 phase induction motor current signal data with 3 bearing conditions, the Discrete Wavelet Transformation with mother wavelet bior1.1 decomposition level 2 and K-Medoids produce an accuracy rate of 86.8%.https://jurnal.untan.ac.id/index.php/Elkha/article/view/41511induction motorbearing faultdiscrete wavelet transformationk-medoids
spellingShingle Eska Rizqi Naufal
Gigih Priyandoko
Fachrudin Hunaini
Klasterisasi Kerusakan Bearing Motor Induksi 3 Fasa Menggunakan Metode Transformasi Wavelet Diskrit dan K-Medoids
Elkha: Jurnal Teknik Elektro
induction motor
bearing fault
discrete wavelet transformation
k-medoids
title Klasterisasi Kerusakan Bearing Motor Induksi 3 Fasa Menggunakan Metode Transformasi Wavelet Diskrit dan K-Medoids
title_full Klasterisasi Kerusakan Bearing Motor Induksi 3 Fasa Menggunakan Metode Transformasi Wavelet Diskrit dan K-Medoids
title_fullStr Klasterisasi Kerusakan Bearing Motor Induksi 3 Fasa Menggunakan Metode Transformasi Wavelet Diskrit dan K-Medoids
title_full_unstemmed Klasterisasi Kerusakan Bearing Motor Induksi 3 Fasa Menggunakan Metode Transformasi Wavelet Diskrit dan K-Medoids
title_short Klasterisasi Kerusakan Bearing Motor Induksi 3 Fasa Menggunakan Metode Transformasi Wavelet Diskrit dan K-Medoids
title_sort klasterisasi kerusakan bearing motor induksi 3 fasa menggunakan metode transformasi wavelet diskrit dan k medoids
topic induction motor
bearing fault
discrete wavelet transformation
k-medoids
url https://jurnal.untan.ac.id/index.php/Elkha/article/view/41511
work_keys_str_mv AT eskarizqinaufal klasterisasikerusakanbearingmotorinduksi3fasamenggunakanmetodetransformasiwaveletdiskritdankmedoids
AT gigihpriyandoko klasterisasikerusakanbearingmotorinduksi3fasamenggunakanmetodetransformasiwaveletdiskritdankmedoids
AT fachrudinhunaini klasterisasikerusakanbearingmotorinduksi3fasamenggunakanmetodetransformasiwaveletdiskritdankmedoids