Summary: | Superoxide dismutases, which catalytically remove intracellular superoxide radicals by the disproportionation of molecular oxygen and hydrogen peroxide, are encoded by the sod-1 to -5 genes in the nematode C. elegans. Expression of the sod genes is mutually compensatory for the modulation of intracellular oxidative stress during aging. Interestingly, several-fold higher expression of the sod-1 to -4 was induced in a sod-5 deletion mutant, despite the low expression levels of sod-5 in wild-type animals. Consequently, this molecular compensation facilitated recovery of lifespan in the sod-5 mutant. In previous reports, two transcription factors DAF-16 and SKN-1 are associated with the compensatory expression of sod genes, which are downstream targets of the ins/IGF-1 and p38 MAPK signaling pathways activated under oxidative and heavy metal stresses, respectively. Here, we show that p38 MAPK signaling regulates induction of not only the direct expression of sod-1, -2 and -4 but also the indirect modulation of DAF-16 targets, such as sod-3 and -5 genes. Moreover, a SKN-1 target, the insulin peptide gene ins-5, partially mediates the expression of DAF-16 targets via p38 MAPK signaling. These findings suggest that the interaction of ins/IGF-1 and p38 MAPK signaling pathways plays an important role in the fine-tuning of molecular compensation among sod genes to protect against mitochondrial oxidative damage during aging.
|