Convergence properties of a family of inexact Levenberg-Marquardt methods

We present a family of inexact Levenberg-Marquardt (LM) methods for the nonlinear equations which takes more general LM parameters and perturbation vectors. We derive an explicit formula of the convergence order of these inexact LM methods under the H$ \mathrm{\ddot{o}} $derian local error bound con...

Full description

Bibliographic Details
Main Authors: Luyao Zhao, Jingyong Tang
Format: Article
Language:English
Published: AIMS Press 2023-06-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2023950?viewType=HTML
Description
Summary:We present a family of inexact Levenberg-Marquardt (LM) methods for the nonlinear equations which takes more general LM parameters and perturbation vectors. We derive an explicit formula of the convergence order of these inexact LM methods under the H$ \mathrm{\ddot{o}} $derian local error bound condition and the H$ \mathrm{\ddot{o}} $derian continuity of the Jacobian. Moreover, we develop a family of inexact LM methods with a nonmonotone line search and prove that it is globally convergent. Numerical results for solving the linear complementarity problem are reported.
ISSN:2473-6988