Ecotoxicological test to assess effects of herbicides on spore germination of Rhizophagus clarus and Gigaspora albida

Given the essential role of arbuscular mycorrhizal fungi (AMF) in soil systems and agriculture, their use as biological indicators has risen in all fields of microbiology research. However, AMF sensitivity to chemical pesticides is poorly understood in field conditions, and not explored in ecotoxico...

Full description

Bibliographic Details
Main Authors: Aline de Liz Ronsani Malfatti, Gilvani Carla Mallmann, Luís Carlos Iuñes Oliveira Filho, Leticia Scopel Camargo Carniel, Sonia Purin Cruz, Osmar Klauberg-Filho
Format: Article
Language:English
Published: Elsevier 2021-01-01
Series:Ecotoxicology and Environmental Safety
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0147651320314366
Description
Summary:Given the essential role of arbuscular mycorrhizal fungi (AMF) in soil systems and agriculture, their use as biological indicators has risen in all fields of microbiology research. However, AMF sensitivity to chemical pesticides is poorly understood in field conditions, and not explored in ecotoxicology protocols. Hence, the goal of this study was to evaluate the effects of different concentrations of glyphosate (Roundup®) and diuron+paraquat (Gramocil®) on the germination of spores of Gigaspora albida and Rhizophagus clarus in a tropical artificial soil. This study was conducted in 2019 at the Soil Ecology and Ecotoxicology Laboratory of the Universidade do Estado de Santa Catarina. The nominal concentrations of glyphosate were 0, 10, 50, 100, 250, 500, 750 and 1000 mg a.i. kg−1. For diuron+paraquat, the concentrations tested were 0, 10 + 20, 50 + 100, 100 + 200, 250 + 500, 500 + 1000, 750 + 1500 and 1000 + 2000 mg a.i. kg−1. Glyphosate did not alter germination of G. albida, but germination inhibition of R. clarus spores was of 30.8% at 1000 mg kg−1. Diuron+paraquat inhibited by 8.0% germination of G. albida, but only at the highest concentration tested. On the other hand, effects on R. clarus were detected at 50 + 100 mg kg−1 concentration and above, and inhibition was as high as 57.7% at the highest concentration evaluated. These results suggest distinct response mechanisms of Rhizophagus and Gigaspora when exposed to herbicides, with the former being more sensitive than the later.
ISSN:0147-6513