Viscosity approximation fixed points for nonexpansive and <inline-formula><graphic file="1687-1812-2006-81325-i1.gif"/></inline-formula>-accretive operators

<p/> <p>Let <inline-formula><graphic file="1687-1812-2006-81325-i2.gif"/></inline-formula> be a real reflexive Banach space, let <inline-formula><graphic file="1687-1812-2006-81325-i3.gif"/></inline-formula> be a closed convex subse...

Full description

Bibliographic Details
Main Authors: Chen Rudong, Zhu Zhichuan
Format: Article
Language:English
Published: SpringerOpen 2006-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2006/81325
Description
Summary:<p/> <p>Let <inline-formula><graphic file="1687-1812-2006-81325-i2.gif"/></inline-formula> be a real reflexive Banach space, let <inline-formula><graphic file="1687-1812-2006-81325-i3.gif"/></inline-formula> be a closed convex subset of <inline-formula><graphic file="1687-1812-2006-81325-i4.gif"/></inline-formula>, and let <inline-formula><graphic file="1687-1812-2006-81325-i5.gif"/></inline-formula> be an <inline-formula><graphic file="1687-1812-2006-81325-i6.gif"/></inline-formula>-accretive operator with a zero. Consider the iterative method that generates the sequence <inline-formula><graphic file="1687-1812-2006-81325-i7.gif"/></inline-formula> by the algorithm <inline-formula><graphic file="1687-1812-2006-81325-i8.gif"/></inline-formula> where <inline-formula><graphic file="1687-1812-2006-81325-i9.gif"/></inline-formula> and <inline-formula><graphic file="1687-1812-2006-81325-i10.gif"/></inline-formula> are two sequences satisfying certain conditions, <inline-formula><graphic file="1687-1812-2006-81325-i11.gif"/></inline-formula> denotes the resolvent <inline-formula><graphic file="1687-1812-2006-81325-i12.gif"/></inline-formula> for <inline-formula><graphic file="1687-1812-2006-81325-i13.gif"/></inline-formula>, and let <inline-formula><graphic file="1687-1812-2006-81325-i14.gif"/></inline-formula> be a fixed contractive mapping. The strong convergence of the algorithm <inline-formula><graphic file="1687-1812-2006-81325-i15.gif"/></inline-formula> is proved assuming that <inline-formula><graphic file="1687-1812-2006-81325-i16.gif"/></inline-formula> has a weakly continuous duality map.</p>
ISSN:1687-1820
1687-1812