Viscosity approximation fixed points for nonexpansive and <inline-formula><graphic file="1687-1812-2006-81325-i1.gif"/></inline-formula>-accretive operators

<p/> <p>Let <inline-formula><graphic file="1687-1812-2006-81325-i2.gif"/></inline-formula> be a real reflexive Banach space, let <inline-formula><graphic file="1687-1812-2006-81325-i3.gif"/></inline-formula> be a closed convex subse...

Full description

Bibliographic Details
Main Authors: Chen Rudong, Zhu Zhichuan
Format: Article
Language:English
Published: SpringerOpen 2006-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2006/81325
_version_ 1819000658451234816
author Chen Rudong
Zhu Zhichuan
author_facet Chen Rudong
Zhu Zhichuan
author_sort Chen Rudong
collection DOAJ
description <p/> <p>Let <inline-formula><graphic file="1687-1812-2006-81325-i2.gif"/></inline-formula> be a real reflexive Banach space, let <inline-formula><graphic file="1687-1812-2006-81325-i3.gif"/></inline-formula> be a closed convex subset of <inline-formula><graphic file="1687-1812-2006-81325-i4.gif"/></inline-formula>, and let <inline-formula><graphic file="1687-1812-2006-81325-i5.gif"/></inline-formula> be an <inline-formula><graphic file="1687-1812-2006-81325-i6.gif"/></inline-formula>-accretive operator with a zero. Consider the iterative method that generates the sequence <inline-formula><graphic file="1687-1812-2006-81325-i7.gif"/></inline-formula> by the algorithm <inline-formula><graphic file="1687-1812-2006-81325-i8.gif"/></inline-formula> where <inline-formula><graphic file="1687-1812-2006-81325-i9.gif"/></inline-formula> and <inline-formula><graphic file="1687-1812-2006-81325-i10.gif"/></inline-formula> are two sequences satisfying certain conditions, <inline-formula><graphic file="1687-1812-2006-81325-i11.gif"/></inline-formula> denotes the resolvent <inline-formula><graphic file="1687-1812-2006-81325-i12.gif"/></inline-formula> for <inline-formula><graphic file="1687-1812-2006-81325-i13.gif"/></inline-formula>, and let <inline-formula><graphic file="1687-1812-2006-81325-i14.gif"/></inline-formula> be a fixed contractive mapping. The strong convergence of the algorithm <inline-formula><graphic file="1687-1812-2006-81325-i15.gif"/></inline-formula> is proved assuming that <inline-formula><graphic file="1687-1812-2006-81325-i16.gif"/></inline-formula> has a weakly continuous duality map.</p>
first_indexed 2024-12-20T22:36:49Z
format Article
id doaj.art-3806dbf9fbf040849ffe21d31f887ff8
institution Directory Open Access Journal
issn 1687-1820
1687-1812
language English
last_indexed 2024-12-20T22:36:49Z
publishDate 2006-01-01
publisher SpringerOpen
record_format Article
series Fixed Point Theory and Applications
spelling doaj.art-3806dbf9fbf040849ffe21d31f887ff82022-12-21T19:24:35ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122006-01-012006181325Viscosity approximation fixed points for nonexpansive and <inline-formula><graphic file="1687-1812-2006-81325-i1.gif"/></inline-formula>-accretive operatorsChen RudongZhu Zhichuan<p/> <p>Let <inline-formula><graphic file="1687-1812-2006-81325-i2.gif"/></inline-formula> be a real reflexive Banach space, let <inline-formula><graphic file="1687-1812-2006-81325-i3.gif"/></inline-formula> be a closed convex subset of <inline-formula><graphic file="1687-1812-2006-81325-i4.gif"/></inline-formula>, and let <inline-formula><graphic file="1687-1812-2006-81325-i5.gif"/></inline-formula> be an <inline-formula><graphic file="1687-1812-2006-81325-i6.gif"/></inline-formula>-accretive operator with a zero. Consider the iterative method that generates the sequence <inline-formula><graphic file="1687-1812-2006-81325-i7.gif"/></inline-formula> by the algorithm <inline-formula><graphic file="1687-1812-2006-81325-i8.gif"/></inline-formula> where <inline-formula><graphic file="1687-1812-2006-81325-i9.gif"/></inline-formula> and <inline-formula><graphic file="1687-1812-2006-81325-i10.gif"/></inline-formula> are two sequences satisfying certain conditions, <inline-formula><graphic file="1687-1812-2006-81325-i11.gif"/></inline-formula> denotes the resolvent <inline-formula><graphic file="1687-1812-2006-81325-i12.gif"/></inline-formula> for <inline-formula><graphic file="1687-1812-2006-81325-i13.gif"/></inline-formula>, and let <inline-formula><graphic file="1687-1812-2006-81325-i14.gif"/></inline-formula> be a fixed contractive mapping. The strong convergence of the algorithm <inline-formula><graphic file="1687-1812-2006-81325-i15.gif"/></inline-formula> is proved assuming that <inline-formula><graphic file="1687-1812-2006-81325-i16.gif"/></inline-formula> has a weakly continuous duality map.</p>http://www.fixedpointtheoryandapplications.com/content/2006/81325
spellingShingle Chen Rudong
Zhu Zhichuan
Viscosity approximation fixed points for nonexpansive and <inline-formula><graphic file="1687-1812-2006-81325-i1.gif"/></inline-formula>-accretive operators
Fixed Point Theory and Applications
title Viscosity approximation fixed points for nonexpansive and <inline-formula><graphic file="1687-1812-2006-81325-i1.gif"/></inline-formula>-accretive operators
title_full Viscosity approximation fixed points for nonexpansive and <inline-formula><graphic file="1687-1812-2006-81325-i1.gif"/></inline-formula>-accretive operators
title_fullStr Viscosity approximation fixed points for nonexpansive and <inline-formula><graphic file="1687-1812-2006-81325-i1.gif"/></inline-formula>-accretive operators
title_full_unstemmed Viscosity approximation fixed points for nonexpansive and <inline-formula><graphic file="1687-1812-2006-81325-i1.gif"/></inline-formula>-accretive operators
title_short Viscosity approximation fixed points for nonexpansive and <inline-formula><graphic file="1687-1812-2006-81325-i1.gif"/></inline-formula>-accretive operators
title_sort viscosity approximation fixed points for nonexpansive and inline formula graphic file 1687 1812 2006 81325 i1 gif inline formula accretive operators
url http://www.fixedpointtheoryandapplications.com/content/2006/81325
work_keys_str_mv AT chenrudong viscosityapproximationfixedpointsfornonexpansiveandinlineformulagraphicfile16871812200681325i1gifinlineformulaaccretiveoperators
AT zhuzhichuan viscosityapproximationfixedpointsfornonexpansiveandinlineformulagraphicfile16871812200681325i1gifinlineformulaaccretiveoperators