Summary: | Natural zeolites are crystalline hydrated alkali metal and alkaline earth metal aluminosilicates with unique ion-exchange and sorption properties. The exceptional structure of pores gives natural zeolites several application possibilities, especially for water treatment and construction. For a wider use of natural zeolites, such as catalysis, properties—especially chemical, textural, and mechanical—need to be modified. In this study, the basic natural zeolite foam was synthesized by alkali activation of natural zeolite with an activator (KOH + Na<sub>2</sub>SiO<sub>3</sub>) and foamed by hydrogen peroxide solution. Other foams were prepared by a partial replacement of the natural zeolite with CaO, MgO, and metakaolin (MK) and alkali activated and foamed in the same manner as the basic natural zeolite foam. Other properties of the foams were modified by acid leaching. The aim of the study was to compare the basic alkali activated zeolite foam with the CaO, MgO, and MK modified zeolite foams and determine the effect of the CaO, MgO, and MK modification and the subsequent leaching of the alkali activated zeolite foams on the textural, mechanical, and chemical properties. Properties of alkali activated zeolite foams were determined by Hg porosimetry, N<sub>2</sub> physisorption, NH<sub>3</sub>-TPD, XRF, XRD, and strength analyses. From the data, it is apparent that all modified samples have an increase of pore volume in the mesoporous region and the partial replacement by MgO or CaO significantly increased surface area up to 288.2 m<sup>2</sup>/g while increasing the strength several times. The obtained data showed an improvement in properties and extension of the potential applicability of modified zeolite foams in the chemical industry, especially for catalytic and sorption applications.
|