Vertical structure of aerosols and water vapor over West Africa during the African monsoon dry season

We present observations of tropospheric aerosol and water vapor transport over West Africa and the associated meteorological conditions during the AMMA SOP-0 dry season experiment, which was conducted in West Africa in January–February 2006. This study combines data from ultra-light aircraft (ULA)-b...

Full description

Bibliographic Details
Main Authors: S.-W. Kim, P. Chazette, F. Dulac, J. Sanak, B. Johnson, S.-C. Yoon
Format: Article
Language:English
Published: Copernicus Publications 2009-10-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/9/8017/2009/acp-9-8017-2009.pdf
_version_ 1811287369204105216
author S.-W. Kim
P. Chazette
F. Dulac
J. Sanak
B. Johnson
S.-C. Yoon
author_facet S.-W. Kim
P. Chazette
F. Dulac
J. Sanak
B. Johnson
S.-C. Yoon
author_sort S.-W. Kim
collection DOAJ
description We present observations of tropospheric aerosol and water vapor transport over West Africa and the associated meteorological conditions during the AMMA SOP-0 dry season experiment, which was conducted in West Africa in January–February 2006. This study combines data from ultra-light aircraft (ULA)-based lidar, airborne in-situ aerosol and gas measurements, standard meteorological measurements, satellite-based aerosol measurements, airmass trajectories, and radiosonde measurements. At Niamey (13.5° N, 2.2° E) the prevailing surface wind (i.e. Harmattan) was from the northeast bringing dry dusty air from the Sahara desert. High concentrations of mineral dust aerosol were typically observed from the surface to 1.5 or 2 km associated with the Saharan airmasses. At higher altitudes the prevailing wind veered to the south or southeast bringing relatively warm and humid airmasses from the biomass burning regions to the Sahel (<10° N). These elevated layers had high concentrations of biomass burning aerosol and were typically observed between altitudes of 2–5 km. Meteorological analyses show these airmasses were advected upwards over the biomass burning regions through ascent in Inter-Tropical Discontinuity (ITD) zone. Aerosol vertical profiles obtained from the space-based lidar CALIOP onboard CALIPSO during January 2007 also showed the presence of dust particles (particle depolarization (δ)~30%, lidar Ångström exponent (<i>LAE</i>)<0, aerosol backscatter to extinction ratio (<i>BER</i>): 0.026~0.028 sr<sup>−1</sup>) at low levels (<1.5 km) and biomass burning smoke aerosol (δ<10%, <i>LAE</i>: 0.6~1.1, <i>BER</i>: 0.015~0.018 sr<sup>−1</sup>) between 2 and 5 km. CALIOP data indicated that these distinct continental dust and biomass burning aerosol layers likely mixed as they advected further south over the tropical Atlantic Ocean, as indicated an intermediate values of δ (10~17%), <i>LAE</i> (0.16~0.18) and <i>BER</i> (0.0021~0.0022 sr<sup>−1</sup>).
first_indexed 2024-04-13T03:17:18Z
format Article
id doaj.art-382fa669b0f0410f85232fcf7e1161ce
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-04-13T03:17:18Z
publishDate 2009-10-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-382fa669b0f0410f85232fcf7e1161ce2022-12-22T03:04:52ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242009-10-0192080178038Vertical structure of aerosols and water vapor over West Africa during the African monsoon dry seasonS.-W. KimP. ChazetteF. DulacJ. SanakB. JohnsonS.-C. YoonWe present observations of tropospheric aerosol and water vapor transport over West Africa and the associated meteorological conditions during the AMMA SOP-0 dry season experiment, which was conducted in West Africa in January–February 2006. This study combines data from ultra-light aircraft (ULA)-based lidar, airborne in-situ aerosol and gas measurements, standard meteorological measurements, satellite-based aerosol measurements, airmass trajectories, and radiosonde measurements. At Niamey (13.5° N, 2.2° E) the prevailing surface wind (i.e. Harmattan) was from the northeast bringing dry dusty air from the Sahara desert. High concentrations of mineral dust aerosol were typically observed from the surface to 1.5 or 2 km associated with the Saharan airmasses. At higher altitudes the prevailing wind veered to the south or southeast bringing relatively warm and humid airmasses from the biomass burning regions to the Sahel (<10° N). These elevated layers had high concentrations of biomass burning aerosol and were typically observed between altitudes of 2–5 km. Meteorological analyses show these airmasses were advected upwards over the biomass burning regions through ascent in Inter-Tropical Discontinuity (ITD) zone. Aerosol vertical profiles obtained from the space-based lidar CALIOP onboard CALIPSO during January 2007 also showed the presence of dust particles (particle depolarization (δ)~30%, lidar Ångström exponent (<i>LAE</i>)<0, aerosol backscatter to extinction ratio (<i>BER</i>): 0.026~0.028 sr<sup>−1</sup>) at low levels (<1.5 km) and biomass burning smoke aerosol (δ<10%, <i>LAE</i>: 0.6~1.1, <i>BER</i>: 0.015~0.018 sr<sup>−1</sup>) between 2 and 5 km. CALIOP data indicated that these distinct continental dust and biomass burning aerosol layers likely mixed as they advected further south over the tropical Atlantic Ocean, as indicated an intermediate values of δ (10~17%), <i>LAE</i> (0.16~0.18) and <i>BER</i> (0.0021~0.0022 sr<sup>−1</sup>).http://www.atmos-chem-phys.net/9/8017/2009/acp-9-8017-2009.pdf
spellingShingle S.-W. Kim
P. Chazette
F. Dulac
J. Sanak
B. Johnson
S.-C. Yoon
Vertical structure of aerosols and water vapor over West Africa during the African monsoon dry season
Atmospheric Chemistry and Physics
title Vertical structure of aerosols and water vapor over West Africa during the African monsoon dry season
title_full Vertical structure of aerosols and water vapor over West Africa during the African monsoon dry season
title_fullStr Vertical structure of aerosols and water vapor over West Africa during the African monsoon dry season
title_full_unstemmed Vertical structure of aerosols and water vapor over West Africa during the African monsoon dry season
title_short Vertical structure of aerosols and water vapor over West Africa during the African monsoon dry season
title_sort vertical structure of aerosols and water vapor over west africa during the african monsoon dry season
url http://www.atmos-chem-phys.net/9/8017/2009/acp-9-8017-2009.pdf
work_keys_str_mv AT swkim verticalstructureofaerosolsandwatervaporoverwestafricaduringtheafricanmonsoondryseason
AT pchazette verticalstructureofaerosolsandwatervaporoverwestafricaduringtheafricanmonsoondryseason
AT fdulac verticalstructureofaerosolsandwatervaporoverwestafricaduringtheafricanmonsoondryseason
AT jsanak verticalstructureofaerosolsandwatervaporoverwestafricaduringtheafricanmonsoondryseason
AT bjohnson verticalstructureofaerosolsandwatervaporoverwestafricaduringtheafricanmonsoondryseason
AT scyoon verticalstructureofaerosolsandwatervaporoverwestafricaduringtheafricanmonsoondryseason