Exploring Multiscale Variability in Groundwater Quality: A Comparative Analysis of Spatial and Temporal Patterns via Clustering

Defining homogeneous units to optimize the monitoring and management of groundwater is a key challenge for organizations responsible for the protection of water for human consumption. However, the number of groundwater bodies (GWBs) is too large for targeted monitoring and recommendations. This stud...

Full description

Bibliographic Details
Main Authors: Ismail Mohsine, Ilias Kacimi, Shiny Abraham, Vincent Valles, Laurent Barbiero, Fabrice Dassonville, Tarik Bahaj, Nadia Kassou, Abdessamad Touiouine, Meryem Jabrane, Meryem Touzani, Badr El Mahrad, Tarik Bouramtane
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/15/8/1603
_version_ 1797603123329499136
author Ismail Mohsine
Ilias Kacimi
Shiny Abraham
Vincent Valles
Laurent Barbiero
Fabrice Dassonville
Tarik Bahaj
Nadia Kassou
Abdessamad Touiouine
Meryem Jabrane
Meryem Touzani
Badr El Mahrad
Tarik Bouramtane
author_facet Ismail Mohsine
Ilias Kacimi
Shiny Abraham
Vincent Valles
Laurent Barbiero
Fabrice Dassonville
Tarik Bahaj
Nadia Kassou
Abdessamad Touiouine
Meryem Jabrane
Meryem Touzani
Badr El Mahrad
Tarik Bouramtane
author_sort Ismail Mohsine
collection DOAJ
description Defining homogeneous units to optimize the monitoring and management of groundwater is a key challenge for organizations responsible for the protection of water for human consumption. However, the number of groundwater bodies (GWBs) is too large for targeted monitoring and recommendations. This study, carried out in the Provence-Alpes-Côte d’Azur region of France, is based on the intersection of two databases, one grouping together the physicochemical and bacteriological analyses of water and the other delimiting the boundaries of groundwater bodies. The extracted dataset contains 8627 measurements from 1143 observation points distributed over 63 GWB. Data conditioning through logarithmic transformation, dimensional reduction through principal component analysis, and hierarchical classification allows the grouping of GWBs into 11 homogeneous clusters. The fractions of unexplained variance (FUV) and ANOVA R<sup>2</sup> were calculated to assess the performance of the method at each scale. For example, for the total dissolved load (TDS) parameter, the temporal variance was quantified at 0.36 and the clustering causes a loss of information with an R<sup>2</sup> going from 0.63 to 0.4 from the scale of the sampling point to that of the GWB cluster. The results show that the logarithmic transformation reduces the effect of outliers and improves the quality of the GWB clustering. The groups of GWBs are homogeneous and clearly distinguishable from each other. The results can be used to define specific management and protection strategies for each group. The study also highlights the need to take into account the temporal variability of groundwater quality when implementing monitoring and management programs.
first_indexed 2024-03-11T04:25:58Z
format Article
id doaj.art-38428e9fccc049b79efe9d945501b9fa
institution Directory Open Access Journal
issn 2073-4441
language English
last_indexed 2024-03-11T04:25:58Z
publishDate 2023-04-01
publisher MDPI AG
record_format Article
series Water
spelling doaj.art-38428e9fccc049b79efe9d945501b9fa2023-11-17T21:49:26ZengMDPI AGWater2073-44412023-04-01158160310.3390/w15081603Exploring Multiscale Variability in Groundwater Quality: A Comparative Analysis of Spatial and Temporal Patterns via ClusteringIsmail Mohsine0Ilias Kacimi1Shiny Abraham2Vincent Valles3Laurent Barbiero4Fabrice Dassonville5Tarik Bahaj6Nadia Kassou7Abdessamad Touiouine8Meryem Jabrane9Meryem Touzani10Badr El Mahrad11Tarik Bouramtane12Geosciences, Water and Environment Laboratory, Faculty of Sciences Rabat, Mohammed V University, Rabat 10000, MoroccoGeosciences, Water and Environment Laboratory, Faculty of Sciences Rabat, Mohammed V University, Rabat 10000, MoroccoElectrical and Computer Engineering Department, Seattle University, Seattle, WA 98122, USAMixed Research Unit EMMAH (Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes), Hydrogeology Laboratory, Avignon University, 84916 Avignon, FranceInstitut de Recherche pour le Développement, Géoscience Environnement Toulouse, CNRS, University of Toulouse, UMR 5563, 31400 Toulouse, FranceARS (Provence-Alpes-Côte d’Azur Regional Health Agency), 132, Boulevard de Paris, CEDEX 03, 13331 Marseille, FranceGeosciences, Water and Environment Laboratory, Faculty of Sciences Rabat, Mohammed V University, Rabat 10000, MoroccoGeosciences, Water and Environment Laboratory, Faculty of Sciences Rabat, Mohammed V University, Rabat 10000, MoroccoLaboratoire de Géosciences, Faculté des Sciences, Université Ibn Tofaïl, BP 133, Kénitra 14000, MoroccoLaboratoire de Géosciences, Faculté des Sciences, Université Ibn Tofaïl, BP 133, Kénitra 14000, MoroccoNational Institute of Agronomic Research, Rabat 10060, MoroccoGeosciences, Water and Environment Laboratory, Faculty of Sciences Rabat, Mohammed V University, Rabat 10000, MoroccoGeosciences, Water and Environment Laboratory, Faculty of Sciences Rabat, Mohammed V University, Rabat 10000, MoroccoDefining homogeneous units to optimize the monitoring and management of groundwater is a key challenge for organizations responsible for the protection of water for human consumption. However, the number of groundwater bodies (GWBs) is too large for targeted monitoring and recommendations. This study, carried out in the Provence-Alpes-Côte d’Azur region of France, is based on the intersection of two databases, one grouping together the physicochemical and bacteriological analyses of water and the other delimiting the boundaries of groundwater bodies. The extracted dataset contains 8627 measurements from 1143 observation points distributed over 63 GWB. Data conditioning through logarithmic transformation, dimensional reduction through principal component analysis, and hierarchical classification allows the grouping of GWBs into 11 homogeneous clusters. The fractions of unexplained variance (FUV) and ANOVA R<sup>2</sup> were calculated to assess the performance of the method at each scale. For example, for the total dissolved load (TDS) parameter, the temporal variance was quantified at 0.36 and the clustering causes a loss of information with an R<sup>2</sup> going from 0.63 to 0.4 from the scale of the sampling point to that of the GWB cluster. The results show that the logarithmic transformation reduces the effect of outliers and improves the quality of the GWB clustering. The groups of GWBs are homogeneous and clearly distinguishable from each other. The results can be used to define specific management and protection strategies for each group. The study also highlights the need to take into account the temporal variability of groundwater quality when implementing monitoring and management programs.https://www.mdpi.com/2073-4441/15/8/1603groundwater qualityEuropean Union Water Framework Directivegroundwater Bodieshydrogeological clustersenvironmental outliersPACA region of France
spellingShingle Ismail Mohsine
Ilias Kacimi
Shiny Abraham
Vincent Valles
Laurent Barbiero
Fabrice Dassonville
Tarik Bahaj
Nadia Kassou
Abdessamad Touiouine
Meryem Jabrane
Meryem Touzani
Badr El Mahrad
Tarik Bouramtane
Exploring Multiscale Variability in Groundwater Quality: A Comparative Analysis of Spatial and Temporal Patterns via Clustering
Water
groundwater quality
European Union Water Framework Directive
groundwater Bodies
hydrogeological clusters
environmental outliers
PACA region of France
title Exploring Multiscale Variability in Groundwater Quality: A Comparative Analysis of Spatial and Temporal Patterns via Clustering
title_full Exploring Multiscale Variability in Groundwater Quality: A Comparative Analysis of Spatial and Temporal Patterns via Clustering
title_fullStr Exploring Multiscale Variability in Groundwater Quality: A Comparative Analysis of Spatial and Temporal Patterns via Clustering
title_full_unstemmed Exploring Multiscale Variability in Groundwater Quality: A Comparative Analysis of Spatial and Temporal Patterns via Clustering
title_short Exploring Multiscale Variability in Groundwater Quality: A Comparative Analysis of Spatial and Temporal Patterns via Clustering
title_sort exploring multiscale variability in groundwater quality a comparative analysis of spatial and temporal patterns via clustering
topic groundwater quality
European Union Water Framework Directive
groundwater Bodies
hydrogeological clusters
environmental outliers
PACA region of France
url https://www.mdpi.com/2073-4441/15/8/1603
work_keys_str_mv AT ismailmohsine exploringmultiscalevariabilityingroundwaterqualityacomparativeanalysisofspatialandtemporalpatternsviaclustering
AT iliaskacimi exploringmultiscalevariabilityingroundwaterqualityacomparativeanalysisofspatialandtemporalpatternsviaclustering
AT shinyabraham exploringmultiscalevariabilityingroundwaterqualityacomparativeanalysisofspatialandtemporalpatternsviaclustering
AT vincentvalles exploringmultiscalevariabilityingroundwaterqualityacomparativeanalysisofspatialandtemporalpatternsviaclustering
AT laurentbarbiero exploringmultiscalevariabilityingroundwaterqualityacomparativeanalysisofspatialandtemporalpatternsviaclustering
AT fabricedassonville exploringmultiscalevariabilityingroundwaterqualityacomparativeanalysisofspatialandtemporalpatternsviaclustering
AT tarikbahaj exploringmultiscalevariabilityingroundwaterqualityacomparativeanalysisofspatialandtemporalpatternsviaclustering
AT nadiakassou exploringmultiscalevariabilityingroundwaterqualityacomparativeanalysisofspatialandtemporalpatternsviaclustering
AT abdessamadtouiouine exploringmultiscalevariabilityingroundwaterqualityacomparativeanalysisofspatialandtemporalpatternsviaclustering
AT meryemjabrane exploringmultiscalevariabilityingroundwaterqualityacomparativeanalysisofspatialandtemporalpatternsviaclustering
AT meryemtouzani exploringmultiscalevariabilityingroundwaterqualityacomparativeanalysisofspatialandtemporalpatternsviaclustering
AT badrelmahrad exploringmultiscalevariabilityingroundwaterqualityacomparativeanalysisofspatialandtemporalpatternsviaclustering
AT tarikbouramtane exploringmultiscalevariabilityingroundwaterqualityacomparativeanalysisofspatialandtemporalpatternsviaclustering