Diversity of the Antimicrobial Peptide Genes in Collembola

Multidrug-resistant bacteria are a current health crisis threatening the world’s population, and scientists are looking for new drugs to combat them. Antimicrobial peptides (AMPs), which are part of the organism’s innate immune system, are a promising new drug class as they can disrupt bacterial cel...

Full description

Bibliographic Details
Main Authors: Goma Pradhan, Patamarerk Engsontia
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Insects
Subjects:
Online Access:https://www.mdpi.com/2075-4450/14/3/215
Description
Summary:Multidrug-resistant bacteria are a current health crisis threatening the world’s population, and scientists are looking for new drugs to combat them. Antimicrobial peptides (AMPs), which are part of the organism’s innate immune system, are a promising new drug class as they can disrupt bacterial cell membranes. This study explored antimicrobial peptide genes in collembola, a non-insect hexapod lineage that has survived in microbe-rich habitats for millions of years, and their antimicrobial peptides have not been thoroughly investigated. We used in silico analysis (homology-based gene identification, physicochemical and antimicrobial property prediction) to identify AMP genes from the genomes and transcriptomes of five collembola representing three main suborders: Entomobryomorpha (<i>Orchesella cincta</i>, <i>Sinella curviseta</i>), Poduromorpha (<i>Holacanthella duospinosa</i>, <i>Anurida maritima</i>), and Symphypleona (<i>Sminthurus viridis</i>). We identified 45 genes belonging to five AMP families, including (a) cysteine-rich peptides: diapausin, defensin, and Alo; (b) linear α-helical peptide without cysteine: cecropin; (c) glycine-rich peptide: diptericin. Frequent gene gains and losses were observed in their evolution. Based on the functions of their orthologs in insects, these AMPs potentially have broad activity against bacteria, fungi, and viruses. This study provides candidate collembolan AMPs for further functional analysis that could lead to medicinal use.
ISSN:2075-4450