Comparative Panel Sequencing of DNA Variants in cf-, ev- and tumorDNA for Pancreatic Ductal Adenocarcinoma Patients

Pancreatic ductal adenocarcinomas (PDACs) are tumors with poor prognosis and limited treatment options. Personalized medicine aims at characterizing actionable DNA variants by next-generation sequencing, thereby improving treatment strategies and outcomes. Fine-needle tumor biopsies are currently th...

Full description

Bibliographic Details
Main Authors: Mareike Waldenmaier, Lucas Schulte, Jonathan Schönfelder, Axel Fürstberger, Johann M. Kraus, Nora Daiss, Tanja Seibold, Mareen Morawe, Thomas J. Ettrich, Hans A. Kestler, Christoph Kahlert, Thomas Seufferlein, Tim Eiseler
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Cancers
Subjects:
Online Access:https://www.mdpi.com/2072-6694/14/4/1074
Description
Summary:Pancreatic ductal adenocarcinomas (PDACs) are tumors with poor prognosis and limited treatment options. Personalized medicine aims at characterizing actionable DNA variants by next-generation sequencing, thereby improving treatment strategies and outcomes. Fine-needle tumor biopsies are currently the gold standard to acquire samples for DNA profiling. However, liquid biopsies have considerable advantages as they are minimally invasive and frequently obtainable and thus may help to monitor tumor evolution over time. However, which liquid analyte works best for this purpose is currently unclear. Our study aims to directly compare tumor-, circulating free (cf-) and extracellular vesicle-derived (ev)DNA by panel sequencing of matching patient material. We evaluated copy number variations (CNVs), single nucleotide variants (SNVs) and insertions and deletions (indels). Our data show that evDNA contains significantly larger DNA fragments up to 5.5 kb, in line with previous observations. Stringent bioinformatic processing revealed a significant advantage of evDNA with respect to cfDNA concerning detection performance for SNVs and a numerical increase for indels. A combination of ev- and cfDNA was clearly superior for SNV detection, as compared to either single analyte, thus potentially improving actionable variant prediction upon further optimization. Finally, calling of CNVs from liquid biopsies still remained challenging and uninformative.
ISSN:2072-6694