<i>L<sup>p</sup></i>-Mapping Properties of a Class of Spherical Integral Operators

In this paper, we study a class of spherical integral operators <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">I</mi><mi mathvariant="san...

Full description

Bibliographic Details
Main Authors: Laith Hawawsheh, Ahmad Qazza, Rania Saadeh, Amjed Zraiqat, Iqbal M. Batiha
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/9/802
_version_ 1797581288319746048
author Laith Hawawsheh
Ahmad Qazza
Rania Saadeh
Amjed Zraiqat
Iqbal M. Batiha
author_facet Laith Hawawsheh
Ahmad Qazza
Rania Saadeh
Amjed Zraiqat
Iqbal M. Batiha
author_sort Laith Hawawsheh
collection DOAJ
description In this paper, we study a class of spherical integral operators <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">I</mi><mi mathvariant="sans-serif">Ω</mi></msub><mi>f</mi></mrow></semantics></math></inline-formula>. We prove an inequality that relates this class of operators with some well-known Marcinkiewicz integral operators by using the classical Hardy inequality. We also attain the boundedness of the operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">I</mi><mi mathvariant="sans-serif">Ω</mi></msub><mi>f</mi></mrow></semantics></math></inline-formula> for some <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mn>2</mn></mrow></semantics></math></inline-formula> whenever <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula> belongs to a certain class of Lebesgue spaces. In addition, we introduce a new proof of the optimality condition on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula> in order to obtain the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mn>2</mn></msup></semantics></math></inline-formula>-boundedness of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">I</mi><mi mathvariant="sans-serif">Ω</mi></msub></semantics></math></inline-formula>. Generally, the purpose of this work is to set up new proofs and extend several known results connected with a class of spherical integral operators.
first_indexed 2024-03-10T23:03:20Z
format Article
id doaj.art-38adf2fbfe83499bada433e75c1b37c6
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-10T23:03:20Z
publishDate 2023-08-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-38adf2fbfe83499bada433e75c1b37c62023-11-19T09:31:56ZengMDPI AGAxioms2075-16802023-08-0112980210.3390/axioms12090802<i>L<sup>p</sup></i>-Mapping Properties of a Class of Spherical Integral OperatorsLaith Hawawsheh0Ahmad Qazza1Rania Saadeh2Amjed Zraiqat3Iqbal M. Batiha4School of Basic Sciences and Humanities, German Jordanian University, Amman 11180, JordanDepartment of Mathematics, Faculty of Science, Zarqa University, Zarga 13110, JordanDepartment of Mathematics, Faculty of Science, Zarqa University, Zarga 13110, JordanDepartment of Mathematics, Al Zaytoonah University, Amman 11733, JordanDepartment of Mathematics, Al Zaytoonah University, Amman 11733, JordanIn this paper, we study a class of spherical integral operators <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">I</mi><mi mathvariant="sans-serif">Ω</mi></msub><mi>f</mi></mrow></semantics></math></inline-formula>. We prove an inequality that relates this class of operators with some well-known Marcinkiewicz integral operators by using the classical Hardy inequality. We also attain the boundedness of the operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">I</mi><mi mathvariant="sans-serif">Ω</mi></msub><mi>f</mi></mrow></semantics></math></inline-formula> for some <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mn>2</mn></mrow></semantics></math></inline-formula> whenever <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula> belongs to a certain class of Lebesgue spaces. In addition, we introduce a new proof of the optimality condition on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula> in order to obtain the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mn>2</mn></msup></semantics></math></inline-formula>-boundedness of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">I</mi><mi mathvariant="sans-serif">Ω</mi></msub></semantics></math></inline-formula>. Generally, the purpose of this work is to set up new proofs and extend several known results connected with a class of spherical integral operators.https://www.mdpi.com/2075-1680/12/9/802singular integralssquare functionsmaximal functions
spellingShingle Laith Hawawsheh
Ahmad Qazza
Rania Saadeh
Amjed Zraiqat
Iqbal M. Batiha
<i>L<sup>p</sup></i>-Mapping Properties of a Class of Spherical Integral Operators
Axioms
singular integrals
square functions
maximal functions
title <i>L<sup>p</sup></i>-Mapping Properties of a Class of Spherical Integral Operators
title_full <i>L<sup>p</sup></i>-Mapping Properties of a Class of Spherical Integral Operators
title_fullStr <i>L<sup>p</sup></i>-Mapping Properties of a Class of Spherical Integral Operators
title_full_unstemmed <i>L<sup>p</sup></i>-Mapping Properties of a Class of Spherical Integral Operators
title_short <i>L<sup>p</sup></i>-Mapping Properties of a Class of Spherical Integral Operators
title_sort i l sup p sup i mapping properties of a class of spherical integral operators
topic singular integrals
square functions
maximal functions
url https://www.mdpi.com/2075-1680/12/9/802
work_keys_str_mv AT laithhawawsheh ilsuppsupimappingpropertiesofaclassofsphericalintegraloperators
AT ahmadqazza ilsuppsupimappingpropertiesofaclassofsphericalintegraloperators
AT raniasaadeh ilsuppsupimappingpropertiesofaclassofsphericalintegraloperators
AT amjedzraiqat ilsuppsupimappingpropertiesofaclassofsphericalintegraloperators
AT iqbalmbatiha ilsuppsupimappingpropertiesofaclassofsphericalintegraloperators