An Iteration Method for Nonexpansive Mappings in Hilbert Spaces

<p/> <p>In real Hilbert space <inline-formula><graphic file="1687-1812-2007-028619-i1.gif"/></inline-formula>, from an arbitrary initial point <inline-formula><graphic file="1687-1812-2007-028619-i2.gif"/></inline-formula>, an expli...

Full description

Bibliographic Details
Main Author: Wang Lin
Format: Article
Language:English
Published: SpringerOpen 2007-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2007/028619
_version_ 1818998803814940672
author Wang Lin
author_facet Wang Lin
author_sort Wang Lin
collection DOAJ
description <p/> <p>In real Hilbert space <inline-formula><graphic file="1687-1812-2007-028619-i1.gif"/></inline-formula>, from an arbitrary initial point <inline-formula><graphic file="1687-1812-2007-028619-i2.gif"/></inline-formula>, an explicit iteration scheme is defined as follows: <inline-formula><graphic file="1687-1812-2007-028619-i3.gif"/></inline-formula>, where <inline-formula><graphic file="1687-1812-2007-028619-i4.gif"/></inline-formula>, <inline-formula><graphic file="1687-1812-2007-028619-i5.gif"/></inline-formula> is a nonexpansive mapping such that <inline-formula><graphic file="1687-1812-2007-028619-i6.gif"/></inline-formula> is nonempty, <inline-formula><graphic file="1687-1812-2007-028619-i7.gif"/></inline-formula> is a <inline-formula><graphic file="1687-1812-2007-028619-i8.gif"/></inline-formula>-strongly monotone and <inline-formula><graphic file="1687-1812-2007-028619-i9.gif"/></inline-formula>-Lipschitzian mapping, <inline-formula><graphic file="1687-1812-2007-028619-i10.gif"/></inline-formula>, and <inline-formula><graphic file="1687-1812-2007-028619-i11.gif"/></inline-formula>. Under some suitable conditions, the sequence <inline-formula><graphic file="1687-1812-2007-028619-i12.gif"/></inline-formula> is shown to converge strongly to a fixed point of <inline-formula><graphic file="1687-1812-2007-028619-i13.gif"/></inline-formula> and the necessary and sufficient conditions that <inline-formula><graphic file="1687-1812-2007-028619-i14.gif"/></inline-formula> converges strongly to a fixed point of <inline-formula><graphic file="1687-1812-2007-028619-i15.gif"/></inline-formula> are obtained.</p>
first_indexed 2024-12-20T22:07:20Z
format Article
id doaj.art-38aeafcbfe9f4fe3b5975122c28d6764
institution Directory Open Access Journal
issn 1687-1820
1687-1812
language English
last_indexed 2024-12-20T22:07:20Z
publishDate 2007-01-01
publisher SpringerOpen
record_format Article
series Fixed Point Theory and Applications
spelling doaj.art-38aeafcbfe9f4fe3b5975122c28d67642022-12-21T19:25:14ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122007-01-0120071028619An Iteration Method for Nonexpansive Mappings in Hilbert SpacesWang Lin<p/> <p>In real Hilbert space <inline-formula><graphic file="1687-1812-2007-028619-i1.gif"/></inline-formula>, from an arbitrary initial point <inline-formula><graphic file="1687-1812-2007-028619-i2.gif"/></inline-formula>, an explicit iteration scheme is defined as follows: <inline-formula><graphic file="1687-1812-2007-028619-i3.gif"/></inline-formula>, where <inline-formula><graphic file="1687-1812-2007-028619-i4.gif"/></inline-formula>, <inline-formula><graphic file="1687-1812-2007-028619-i5.gif"/></inline-formula> is a nonexpansive mapping such that <inline-formula><graphic file="1687-1812-2007-028619-i6.gif"/></inline-formula> is nonempty, <inline-formula><graphic file="1687-1812-2007-028619-i7.gif"/></inline-formula> is a <inline-formula><graphic file="1687-1812-2007-028619-i8.gif"/></inline-formula>-strongly monotone and <inline-formula><graphic file="1687-1812-2007-028619-i9.gif"/></inline-formula>-Lipschitzian mapping, <inline-formula><graphic file="1687-1812-2007-028619-i10.gif"/></inline-formula>, and <inline-formula><graphic file="1687-1812-2007-028619-i11.gif"/></inline-formula>. Under some suitable conditions, the sequence <inline-formula><graphic file="1687-1812-2007-028619-i12.gif"/></inline-formula> is shown to converge strongly to a fixed point of <inline-formula><graphic file="1687-1812-2007-028619-i13.gif"/></inline-formula> and the necessary and sufficient conditions that <inline-formula><graphic file="1687-1812-2007-028619-i14.gif"/></inline-formula> converges strongly to a fixed point of <inline-formula><graphic file="1687-1812-2007-028619-i15.gif"/></inline-formula> are obtained.</p>http://www.fixedpointtheoryandapplications.com/content/2007/028619
spellingShingle Wang Lin
An Iteration Method for Nonexpansive Mappings in Hilbert Spaces
Fixed Point Theory and Applications
title An Iteration Method for Nonexpansive Mappings in Hilbert Spaces
title_full An Iteration Method for Nonexpansive Mappings in Hilbert Spaces
title_fullStr An Iteration Method for Nonexpansive Mappings in Hilbert Spaces
title_full_unstemmed An Iteration Method for Nonexpansive Mappings in Hilbert Spaces
title_short An Iteration Method for Nonexpansive Mappings in Hilbert Spaces
title_sort iteration method for nonexpansive mappings in hilbert spaces
url http://www.fixedpointtheoryandapplications.com/content/2007/028619
work_keys_str_mv AT wanglin aniterationmethodfornonexpansivemappingsinhilbertspaces
AT wanglin iterationmethodfornonexpansivemappingsinhilbertspaces