Information Geometry, Fluctuations, Non-Equilibrium Thermodynamics, and Geodesics in Complex Systems

Information theory provides an interdisciplinary method to understand important phenomena in many research fields ranging from astrophysical and laboratory fluids/plasmas to biological systems. In particular, information geometric theory enables us to envision the evolution of non-equilibrium proces...

Full description

Bibliographic Details
Main Author: Eun-jin Kim
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/11/1393
_version_ 1797510424550178816
author Eun-jin Kim
author_facet Eun-jin Kim
author_sort Eun-jin Kim
collection DOAJ
description Information theory provides an interdisciplinary method to understand important phenomena in many research fields ranging from astrophysical and laboratory fluids/plasmas to biological systems. In particular, information geometric theory enables us to envision the evolution of non-equilibrium processes in terms of a (dimensionless) distance by quantifying how information unfolds over time as a probability density function (PDF) evolves in time. Here, we discuss some recent developments in information geometric theory focusing on time-dependent <i>dynamic</i> aspects of non-equilibrium processes (e.g., time-varying mean value, time-varying variance, or temperature, etc.) and their thermodynamic and physical/biological implications. We compare different distances between two given PDFs and highlight the importance of a path-dependent distance for a time-dependent PDF. We then discuss the role of the information rate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Γ</mo><mo>=</mo><mfrac><mrow><mi>d</mi><mi mathvariant="script">L</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mrow></semantics></math></inline-formula> and relative entropy in non-equilibrium thermodynamic relations (entropy production rate, heat flux, dissipated work, non-equilibrium free energy, etc.), and various inequalities among them. Here, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">L</mi></semantics></math></inline-formula> is the information length representing the total number of statistically distinguishable states a PDF evolves through over time. We explore the implications of a geodesic solution in information geometry for self-organization and control.
first_indexed 2024-03-10T05:31:18Z
format Article
id doaj.art-38b1a5278ce049d8a10d0be0cf1f4b9f
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-10T05:31:18Z
publishDate 2021-10-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-38b1a5278ce049d8a10d0be0cf1f4b9f2023-11-22T23:14:21ZengMDPI AGEntropy1099-43002021-10-012311139310.3390/e23111393Information Geometry, Fluctuations, Non-Equilibrium Thermodynamics, and Geodesics in Complex SystemsEun-jin Kim0Center for Fluid and Complex Systems, Coventry University, Priory St, Coventry CV1 5FB, UKInformation theory provides an interdisciplinary method to understand important phenomena in many research fields ranging from astrophysical and laboratory fluids/plasmas to biological systems. In particular, information geometric theory enables us to envision the evolution of non-equilibrium processes in terms of a (dimensionless) distance by quantifying how information unfolds over time as a probability density function (PDF) evolves in time. Here, we discuss some recent developments in information geometric theory focusing on time-dependent <i>dynamic</i> aspects of non-equilibrium processes (e.g., time-varying mean value, time-varying variance, or temperature, etc.) and their thermodynamic and physical/biological implications. We compare different distances between two given PDFs and highlight the importance of a path-dependent distance for a time-dependent PDF. We then discuss the role of the information rate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Γ</mo><mo>=</mo><mfrac><mrow><mi>d</mi><mi mathvariant="script">L</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mrow></semantics></math></inline-formula> and relative entropy in non-equilibrium thermodynamic relations (entropy production rate, heat flux, dissipated work, non-equilibrium free energy, etc.), and various inequalities among them. Here, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">L</mi></semantics></math></inline-formula> is the information length representing the total number of statistically distinguishable states a PDF evolves through over time. We explore the implications of a geodesic solution in information geometry for self-organization and control.https://www.mdpi.com/1099-4300/23/11/1393information geometryentropyinformation rateinformation lengthfluctuationsLangevin equations
spellingShingle Eun-jin Kim
Information Geometry, Fluctuations, Non-Equilibrium Thermodynamics, and Geodesics in Complex Systems
Entropy
information geometry
entropy
information rate
information length
fluctuations
Langevin equations
title Information Geometry, Fluctuations, Non-Equilibrium Thermodynamics, and Geodesics in Complex Systems
title_full Information Geometry, Fluctuations, Non-Equilibrium Thermodynamics, and Geodesics in Complex Systems
title_fullStr Information Geometry, Fluctuations, Non-Equilibrium Thermodynamics, and Geodesics in Complex Systems
title_full_unstemmed Information Geometry, Fluctuations, Non-Equilibrium Thermodynamics, and Geodesics in Complex Systems
title_short Information Geometry, Fluctuations, Non-Equilibrium Thermodynamics, and Geodesics in Complex Systems
title_sort information geometry fluctuations non equilibrium thermodynamics and geodesics in complex systems
topic information geometry
entropy
information rate
information length
fluctuations
Langevin equations
url https://www.mdpi.com/1099-4300/23/11/1393
work_keys_str_mv AT eunjinkim informationgeometryfluctuationsnonequilibriumthermodynamicsandgeodesicsincomplexsystems