Evaluation of the Survival of <i>Lactobacillus fermentum</i> K73 during the Production of High-Oleic Palm Oil Macroemulsion Powders Using Rotor-Stator Homogenizer and Spray-Drying Technique
This study aimed to evaluate the survival of the probiotic <i>Lactobacillus fermentum</i> when it is encapsulated in powdered macroemulsions to develop a probiotic product with low water activity. For this purpose, the effect of the rotational speed of the rotor-stator and the spray-dryi...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-06-01
|
Series: | Microorganisms |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-2607/11/6/1490 |
_version_ | 1797593385500934144 |
---|---|
author | Angélica Clavijo-Romero Miguel Moyano-Molano Katherine Bauer Estrada Lina Vanessa Pachón-Rojas María Ximena Quintanilla-Carvajal |
author_facet | Angélica Clavijo-Romero Miguel Moyano-Molano Katherine Bauer Estrada Lina Vanessa Pachón-Rojas María Ximena Quintanilla-Carvajal |
author_sort | Angélica Clavijo-Romero |
collection | DOAJ |
description | This study aimed to evaluate the survival of the probiotic <i>Lactobacillus fermentum</i> when it is encapsulated in powdered macroemulsions to develop a probiotic product with low water activity. For this purpose, the effect of the rotational speed of the rotor-stator and the spray-drying process was assessed on the microorganism survival and physical properties of probiotic high-oleic palm oil (HOPO) emulsions and powders. Two Box–Behnken experimental designs were carried out: in the first one, for the effect of the macro emulsification process, the numerical factors were the amount of HOPO, the velocity of the rotor-stator, and time, while the factors for the second one, the drying process, were the amount of HOPO, inoculum, and the inlet temperature. It was found that the droplet size (ADS) and polydispersity index (PdI) were influenced by HOPO concentration and time, ζ-potential by HOPO concentration and velocity, and creaming index (CI) by speed and time of homogenization. Additionally, HOPO concentration affected bacterial survival; the viability was between 78–99% after emulsion preparation and 83–107% after seven days. The spray-drying process showed a similar viable cell count before and after the drying process, a reduction between 0.04 and 0.8 Log10 CFUg<sup>−1</sup>; the moisture varied between 2.4% and 3.7%, values highly acceptable for probiotic products. We concluded that encapsulation of <i>L. fermentum</i> in powdered macroemulsions at the conditions studied is effective in obtaining a functional food from HOPO with optimal physical and probiotic properties according to national legislation (>10<sup>6</sup> CFU mL<sup>−1</sup> or g<sup>−1</sup>). |
first_indexed | 2024-03-11T02:08:06Z |
format | Article |
id | doaj.art-38bec1de5a8849e4b9416b397b551e15 |
institution | Directory Open Access Journal |
issn | 2076-2607 |
language | English |
last_indexed | 2024-03-11T02:08:06Z |
publishDate | 2023-06-01 |
publisher | MDPI AG |
record_format | Article |
series | Microorganisms |
spelling | doaj.art-38bec1de5a8849e4b9416b397b551e152023-11-18T11:42:36ZengMDPI AGMicroorganisms2076-26072023-06-01116149010.3390/microorganisms11061490Evaluation of the Survival of <i>Lactobacillus fermentum</i> K73 during the Production of High-Oleic Palm Oil Macroemulsion Powders Using Rotor-Stator Homogenizer and Spray-Drying TechniqueAngélica Clavijo-Romero0Miguel Moyano-Molano1Katherine Bauer Estrada2Lina Vanessa Pachón-Rojas3María Ximena Quintanilla-Carvajal4Engineering Department, Universidad de la Sabana, Km 7 vía Autopista Norte, Chía 250001, ColombiaEngineering Department, Universidad de la Sabana, Km 7 vía Autopista Norte, Chía 250001, ColombiaEngineering Department, Universidad de la Sabana, Km 7 vía Autopista Norte, Chía 250001, ColombiaEngineering Department, Universidad de la Sabana, Km 7 vía Autopista Norte, Chía 250001, ColombiaEngineering Department, Universidad de la Sabana, Km 7 vía Autopista Norte, Chía 250001, ColombiaThis study aimed to evaluate the survival of the probiotic <i>Lactobacillus fermentum</i> when it is encapsulated in powdered macroemulsions to develop a probiotic product with low water activity. For this purpose, the effect of the rotational speed of the rotor-stator and the spray-drying process was assessed on the microorganism survival and physical properties of probiotic high-oleic palm oil (HOPO) emulsions and powders. Two Box–Behnken experimental designs were carried out: in the first one, for the effect of the macro emulsification process, the numerical factors were the amount of HOPO, the velocity of the rotor-stator, and time, while the factors for the second one, the drying process, were the amount of HOPO, inoculum, and the inlet temperature. It was found that the droplet size (ADS) and polydispersity index (PdI) were influenced by HOPO concentration and time, ζ-potential by HOPO concentration and velocity, and creaming index (CI) by speed and time of homogenization. Additionally, HOPO concentration affected bacterial survival; the viability was between 78–99% after emulsion preparation and 83–107% after seven days. The spray-drying process showed a similar viable cell count before and after the drying process, a reduction between 0.04 and 0.8 Log10 CFUg<sup>−1</sup>; the moisture varied between 2.4% and 3.7%, values highly acceptable for probiotic products. We concluded that encapsulation of <i>L. fermentum</i> in powdered macroemulsions at the conditions studied is effective in obtaining a functional food from HOPO with optimal physical and probiotic properties according to national legislation (>10<sup>6</sup> CFU mL<sup>−1</sup> or g<sup>−1</sup>).https://www.mdpi.com/2076-2607/11/6/1490high oleic palm oil<i>Lactobacillus fermentum</i>macroemulsionsprobiotics encapsulationrotor-statorspray drying |
spellingShingle | Angélica Clavijo-Romero Miguel Moyano-Molano Katherine Bauer Estrada Lina Vanessa Pachón-Rojas María Ximena Quintanilla-Carvajal Evaluation of the Survival of <i>Lactobacillus fermentum</i> K73 during the Production of High-Oleic Palm Oil Macroemulsion Powders Using Rotor-Stator Homogenizer and Spray-Drying Technique Microorganisms high oleic palm oil <i>Lactobacillus fermentum</i> macroemulsions probiotics encapsulation rotor-stator spray drying |
title | Evaluation of the Survival of <i>Lactobacillus fermentum</i> K73 during the Production of High-Oleic Palm Oil Macroemulsion Powders Using Rotor-Stator Homogenizer and Spray-Drying Technique |
title_full | Evaluation of the Survival of <i>Lactobacillus fermentum</i> K73 during the Production of High-Oleic Palm Oil Macroemulsion Powders Using Rotor-Stator Homogenizer and Spray-Drying Technique |
title_fullStr | Evaluation of the Survival of <i>Lactobacillus fermentum</i> K73 during the Production of High-Oleic Palm Oil Macroemulsion Powders Using Rotor-Stator Homogenizer and Spray-Drying Technique |
title_full_unstemmed | Evaluation of the Survival of <i>Lactobacillus fermentum</i> K73 during the Production of High-Oleic Palm Oil Macroemulsion Powders Using Rotor-Stator Homogenizer and Spray-Drying Technique |
title_short | Evaluation of the Survival of <i>Lactobacillus fermentum</i> K73 during the Production of High-Oleic Palm Oil Macroemulsion Powders Using Rotor-Stator Homogenizer and Spray-Drying Technique |
title_sort | evaluation of the survival of i lactobacillus fermentum i k73 during the production of high oleic palm oil macroemulsion powders using rotor stator homogenizer and spray drying technique |
topic | high oleic palm oil <i>Lactobacillus fermentum</i> macroemulsions probiotics encapsulation rotor-stator spray drying |
url | https://www.mdpi.com/2076-2607/11/6/1490 |
work_keys_str_mv | AT angelicaclavijoromero evaluationofthesurvivalofilactobacillusfermentumik73duringtheproductionofhigholeicpalmoilmacroemulsionpowdersusingrotorstatorhomogenizerandspraydryingtechnique AT miguelmoyanomolano evaluationofthesurvivalofilactobacillusfermentumik73duringtheproductionofhigholeicpalmoilmacroemulsionpowdersusingrotorstatorhomogenizerandspraydryingtechnique AT katherinebauerestrada evaluationofthesurvivalofilactobacillusfermentumik73duringtheproductionofhigholeicpalmoilmacroemulsionpowdersusingrotorstatorhomogenizerandspraydryingtechnique AT linavanessapachonrojas evaluationofthesurvivalofilactobacillusfermentumik73duringtheproductionofhigholeicpalmoilmacroemulsionpowdersusingrotorstatorhomogenizerandspraydryingtechnique AT mariaximenaquintanillacarvajal evaluationofthesurvivalofilactobacillusfermentumik73duringtheproductionofhigholeicpalmoilmacroemulsionpowdersusingrotorstatorhomogenizerandspraydryingtechnique |