Comparative Characterization of Protein Hydrolysates from Three Edible Insects: Mealworm Larvae, Adult Crickets, and Silkworm Pupae

A comparative characterization of proteins from three edible insects&#8212;<i>Tenebrio molitor</i> (mealworm) larvae, <i>Gryllus bimaculatus</i> (cricket), and <i>Bombyx mori</i> (silkworm) pupae&#8212;was performed in this study. Proteins were extracted f...

Full description

Bibliographic Details
Main Authors: Sungwon Yoon, Nathan A. K. Wong, Minki Chae, Joong-Hyuck Auh
Format: Article
Language:English
Published: MDPI AG 2019-11-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/8/11/563
Description
Summary:A comparative characterization of proteins from three edible insects&#8212;<i>Tenebrio molitor</i> (mealworm) larvae, <i>Gryllus bimaculatus</i> (cricket), and <i>Bombyx mori</i> (silkworm) pupae&#8212;was performed in this study. Proteins were extracted from edible insects and their hydrolysates were prepared through enzymatic hydrolysis with commercial enzymes (Flavourzyme: 12%; Alcalase: 3%). Solubility was significantly higher following enzymatic hydrolysis, while foamability was lower compared to those of the protein control. Angiotensin-converting enzyme was significantly inhibited after enzymatic hydrolysis, especially following Alcalase treatment, with IC<sub>50</sub> values of 0.047, 0.066, and 0.065 mg/mL for <i>G. bimaculatus</i>, <i>T. molitor</i> larvae, and <i>B. mori</i> pupae, respectively. Moreover, the Alcalase-treated group of <i>B. mori</i> pupae and the <i>T. molitor</i> larvae group treated with a mixture of enzymes showed the effective inhibition of &#945;-glucosidase activity. The anti-inflammatory activity of the insect hydrolysates was assessed via nitric oxide production from macrophages, and <i>B. mori</i> pupae samples exhibited significant activity regardless of the method of hydrolysis. These results indicate the functional properties of protein and hydrolysates from three species of edible insects, which may be useful in their future exploitation.
ISSN:2304-8158