Calibration of Ring Oscillator-Based Integrated Temperature Sensors for Power Management Systems

This paper details the development and validation of a temperature sensing methodology using an un-trimmed oscillator-based integrated sensor implemented in the 0.18-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><...

Full description

Bibliographic Details
Main Authors: Nader El-Zarif, Mostafa Amer, Mohamed Ali, Ahmad Hassan, Aziz Oukaira, Christian Jesus B. Fayomi, Yvon Savaria
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/24/2/440
Description
Summary:This paper details the development and validation of a temperature sensing methodology using an un-trimmed oscillator-based integrated sensor implemented in the 0.18-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m SOI XFAB process, with a focus on thermal monitoring in system-on-chip (SoC) based DC-DC converters. Our study identifies a quadratic relationship between the oscillator output frequency and temperature, which forms the basis of our proposed calibration mechanism. This mechanism aims at mitigating process variation effects, enabling accurate temperature-to-frequency mapping. Our research proposes and characterizes several trimming-free calibration techniques, covering a spectrum from zero to thirty-one frequency-temperature measurement points. Notably, the Corrected One-Point calibration method, requiring only a single ambient temperature measurement, emerges as a practical solution that removes the need for a temperature chamber. This method, after adjustment, successfully reduces the maximum error to within <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>±</mo><mn>2.95</mn></mrow></semantics></math></inline-formula> °C. Additionally, the Two-Point calibration method demonstrates improved precision with a maximum positive error of +1.56 °C at −15 °C and a maximum negative error of −3.13 °C at +10 °C (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> value of 0.9958). The Three-Point calibration method performed similarly, yielding an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> value of 0.9956. The findings of this study indicate that competitive results in temperature sensor calibration can be achieved without circuit trimming, offering a viable alternative or a complementary approach to traditional trimming techniques.
ISSN:1424-8220