Nuclear Magnetic Resonance Metabolomics Approach for the Analysis of Major Legume Sprouts Coupled to Chemometrics

Legume sprouts are a fresh nutritive source of phytochemicals of increasing attention worldwide owing to their many health benefits. Nuclear magnetic resonance (NMR) was utilized for the metabolite fingerprinting of 4 major legume sprouts, belonging to family Fabaceae, to be exploited for quality co...

Full description

Bibliographic Details
Main Authors: Mohamed A. Farag, Mohamed G. Sharaf El-Din, Mohamed A. Selim, Asmaa I. Owis, Sameh F. Abouzid, Andrea Porzel, Ludger A. Wessjohann, Asmaa Otify
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/26/3/761
Description
Summary:Legume sprouts are a fresh nutritive source of phytochemicals of increasing attention worldwide owing to their many health benefits. Nuclear magnetic resonance (NMR) was utilized for the metabolite fingerprinting of 4 major legume sprouts, belonging to family Fabaceae, to be exploited for quality control purposes. Thirty-two metabolites were identified belonging to different classes, i.e., fatty acids, sugars, amino acids, nucleobases, organic acids, sterols, alkaloids, and isoflavonoids. Quantitative NMR was employed for assessing the major identified metabolite levels and multivariate data analysis was utilized to assess metabolome heterogeneity among sprout samples. Isoflavones were detected exclusively in <i>Cicer</i> sprouts, whereas <i>Trigonella</i> was characterized by 4-hydroxyisoleucine. <i>Vicia</i> sprouts were distinguished from other legume sprouts by the presence of L-Dopa versus acetate abundance in <i>Lens</i>. A common alkaloid in all sprouts was trigonelline, detected at 8–25 µg/mg, suggesting its potential role in legume seeds’ germination. Trigonelline was found at highest levels in <i>Trigonella</i> sprouts. The aromatic NMR region data (δ 11.0–5.0 ppm) provided a better classification power than the full range (δ 11.0–0.0 ppm) as sprout variations mostly originated from secondary metabolites, which can serve as chemotaxonomic markers.
ISSN:1420-3049