Hybrid Inversion Algorithms for Retrieval of Absorption Subcomponents from Ocean Colour Remote Sensing Reflectance

Semi-analytical algorithms (SAAs) invert spectral remote sensing reflectance <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><msub><mi>R</mi>...

Full description

Bibliographic Details
Main Authors: Srinivas Kolluru, Surya Prakash Tiwari, Shirishkumar S. Gedam
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/9/1726
_version_ 1827693690850639872
author Srinivas Kolluru
Surya Prakash Tiwari
Shirishkumar S. Gedam
author_facet Srinivas Kolluru
Surya Prakash Tiwari
Shirishkumar S. Gedam
author_sort Srinivas Kolluru
collection DOAJ
description Semi-analytical algorithms (SAAs) invert spectral remote sensing reflectance <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><msub><mi>R</mi><mrow><mi>r</mi><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow><mo>,</mo><mo> </mo><mi>s</mi><msup><mi>r</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> to Inherent Optical Properties (IOPs) of an aquatic medium (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> is the wavelength). Existing SAAs implement different methodologies with a range of spectral IOP models and inversion methods producing concentrations of non-water constituents. Absorption spectrum decomposition algorithms (ADAs) are a set of algorithms developed to partition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>a</mi><mrow><mi>n</mi><mi>w</mi></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow><mo>,</mo><mo> </mo><msup><mo>m</mo><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> (i.e., the light absorption coefficient without pure water absorption), into absorption subcomponents of phytoplankton <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><msub><mi>a</mi><mrow><mi>p</mi><mi>h</mi></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow><mo>,</mo><mo> </mo><msup><mo>m</mo><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and coloured detrital matter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><msub><mi>a</mi><mrow><mi>d</mi><mi>g</mi></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow><mo>,</mo><mo> </mo><msup><mo>m</mo><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. Despite significant developments in ADAs, their applicability to remote sensing applications is rarely studied. The present study formulates hybrid inversion approaches that combine SAAs and ADAs to derive absorption subcomponents from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mrow><mi>r</mi><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and explores potential alternatives to operational SAAs. Using <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mrow><mi>r</mi><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and concurrent absorption subcomponents from four datasets covering a wide range of optical properties, three operational SAAs, i.e., Garver–Siegel–Maritorena (GSM), Quasi-Analytical Algorithm (QAA), Generalized Inherent Optical Property (GIOP) model are evaluated in deriving <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>a</mi><mrow><mi>n</mi><mi>w</mi></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mrow><mi>r</mi><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. Among these three models, QAA and GIOP models derived <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>a</mi><mrow><mi>n</mi><mi>w</mi></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> with lower errors. Among six distinctive ADAs tested in the study, the Generalized Stacked Constraints Model (GSCM) and Zhang’s model-derived absorption subcomponents achieved lower average spectral mean absolute percentage errors (MAPE) in the range of 8–38%. Four hybrid models, GIOP<sub>GSCM</sub>, GIOP<sub>Zhang,</sub> QAA<sub>GSCM</sub> and QAA<sub>Zhang</sub>, formulated using the SAAs and ADAs, are compared for their absorption subcomponent retrieval performance from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mrow><mi>r</mi><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. GIOP<sub>GSCM</sub> and GIOP<sub>Zhang</sub> models derived absorption subcomponents have lower errors than GIOP and QAA. Potential uncertainties associated with datasets and dependency of algorithm performance on datasets were discussed.
first_indexed 2024-03-10T11:48:58Z
format Article
id doaj.art-38dfaa8a3a934c67b786ba322c338109
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-03-10T11:48:58Z
publishDate 2021-04-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-38dfaa8a3a934c67b786ba322c3381092023-11-21T17:48:40ZengMDPI AGRemote Sensing2072-42922021-04-01139172610.3390/rs13091726Hybrid Inversion Algorithms for Retrieval of Absorption Subcomponents from Ocean Colour Remote Sensing ReflectanceSrinivas Kolluru0Surya Prakash Tiwari1Shirishkumar S. Gedam2Center of Studies in Resources Engineering, Indian Institute of Technology, Bombay 400076, IndiaCenter for Environment & Water, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi ArabiaCenter of Studies in Resources Engineering, Indian Institute of Technology, Bombay 400076, IndiaSemi-analytical algorithms (SAAs) invert spectral remote sensing reflectance <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><msub><mi>R</mi><mrow><mi>r</mi><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow><mo>,</mo><mo> </mo><mi>s</mi><msup><mi>r</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> to Inherent Optical Properties (IOPs) of an aquatic medium (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> is the wavelength). Existing SAAs implement different methodologies with a range of spectral IOP models and inversion methods producing concentrations of non-water constituents. Absorption spectrum decomposition algorithms (ADAs) are a set of algorithms developed to partition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>a</mi><mrow><mi>n</mi><mi>w</mi></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow><mo>,</mo><mo> </mo><msup><mo>m</mo><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> (i.e., the light absorption coefficient without pure water absorption), into absorption subcomponents of phytoplankton <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><msub><mi>a</mi><mrow><mi>p</mi><mi>h</mi></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow><mo>,</mo><mo> </mo><msup><mo>m</mo><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and coloured detrital matter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><msub><mi>a</mi><mrow><mi>d</mi><mi>g</mi></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow><mo>,</mo><mo> </mo><msup><mo>m</mo><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. Despite significant developments in ADAs, their applicability to remote sensing applications is rarely studied. The present study formulates hybrid inversion approaches that combine SAAs and ADAs to derive absorption subcomponents from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mrow><mi>r</mi><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and explores potential alternatives to operational SAAs. Using <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mrow><mi>r</mi><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and concurrent absorption subcomponents from four datasets covering a wide range of optical properties, three operational SAAs, i.e., Garver–Siegel–Maritorena (GSM), Quasi-Analytical Algorithm (QAA), Generalized Inherent Optical Property (GIOP) model are evaluated in deriving <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>a</mi><mrow><mi>n</mi><mi>w</mi></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mrow><mi>r</mi><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. Among these three models, QAA and GIOP models derived <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>a</mi><mrow><mi>n</mi><mi>w</mi></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> with lower errors. Among six distinctive ADAs tested in the study, the Generalized Stacked Constraints Model (GSCM) and Zhang’s model-derived absorption subcomponents achieved lower average spectral mean absolute percentage errors (MAPE) in the range of 8–38%. Four hybrid models, GIOP<sub>GSCM</sub>, GIOP<sub>Zhang,</sub> QAA<sub>GSCM</sub> and QAA<sub>Zhang</sub>, formulated using the SAAs and ADAs, are compared for their absorption subcomponent retrieval performance from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mrow><mi>r</mi><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. GIOP<sub>GSCM</sub> and GIOP<sub>Zhang</sub> models derived absorption subcomponents have lower errors than GIOP and QAA. Potential uncertainties associated with datasets and dependency of algorithm performance on datasets were discussed.https://www.mdpi.com/2072-4292/13/9/1726phytoplanktonocean colourinherent optical propertiesremote sensingabsorption
spellingShingle Srinivas Kolluru
Surya Prakash Tiwari
Shirishkumar S. Gedam
Hybrid Inversion Algorithms for Retrieval of Absorption Subcomponents from Ocean Colour Remote Sensing Reflectance
Remote Sensing
phytoplankton
ocean colour
inherent optical properties
remote sensing
absorption
title Hybrid Inversion Algorithms for Retrieval of Absorption Subcomponents from Ocean Colour Remote Sensing Reflectance
title_full Hybrid Inversion Algorithms for Retrieval of Absorption Subcomponents from Ocean Colour Remote Sensing Reflectance
title_fullStr Hybrid Inversion Algorithms for Retrieval of Absorption Subcomponents from Ocean Colour Remote Sensing Reflectance
title_full_unstemmed Hybrid Inversion Algorithms for Retrieval of Absorption Subcomponents from Ocean Colour Remote Sensing Reflectance
title_short Hybrid Inversion Algorithms for Retrieval of Absorption Subcomponents from Ocean Colour Remote Sensing Reflectance
title_sort hybrid inversion algorithms for retrieval of absorption subcomponents from ocean colour remote sensing reflectance
topic phytoplankton
ocean colour
inherent optical properties
remote sensing
absorption
url https://www.mdpi.com/2072-4292/13/9/1726
work_keys_str_mv AT srinivaskolluru hybridinversionalgorithmsforretrievalofabsorptionsubcomponentsfromoceancolourremotesensingreflectance
AT suryaprakashtiwari hybridinversionalgorithmsforretrievalofabsorptionsubcomponentsfromoceancolourremotesensingreflectance
AT shirishkumarsgedam hybridinversionalgorithmsforretrievalofabsorptionsubcomponentsfromoceancolourremotesensingreflectance