A method for demand-accurate one-dimensional cutting problems with pattern reduction

The main objective in the one-dimensional cutting stock problem (1D-CSP) is to minimize material costs. In practice, it is useful to focus on auxiliary objectives, one of which is to reduce the number of different cutting patterns. This paper discusses the classical integer IDCSP, where only one typ...

Full description

Bibliographic Details
Main Authors: Haihua Xiao, Qiaokang Liang, Dan Zhang, Suhua Xiao, Gangzhuo Nie
Format: Article
Language:English
Published: AIMS Press 2023-02-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2023323?viewType=HTML
_version_ 1811159671857217536
author Haihua Xiao
Qiaokang Liang
Dan Zhang
Suhua Xiao
Gangzhuo Nie
author_facet Haihua Xiao
Qiaokang Liang
Dan Zhang
Suhua Xiao
Gangzhuo Nie
author_sort Haihua Xiao
collection DOAJ
description The main objective in the one-dimensional cutting stock problem (1D-CSP) is to minimize material costs. In practice, it is useful to focus on auxiliary objectives, one of which is to reduce the number of different cutting patterns. This paper discusses the classical integer IDCSP, where only one type of stock object is included. Meanwhile, the demands of various items must be precisely satisfied in the constraints. In other words, no overproduction or underproduction is allowed. Therefore, to solve this issue, a variable-to-constant method based on a new mathematical model is proposed. In addition, we integrate the approach with two other representative methods to demonstrate its effectiveness. Both benchmark instances and real instances are used in the experiments, and the results show that the methodology is effective in reducing patterns. In particular, in terms of the solutions to the real-life instances, the proposed approach presents a 31.93 to 37.6% pattern reduction compared to other similar methods (including commercial software).
first_indexed 2024-04-10T05:46:14Z
format Article
id doaj.art-38ec195f7aac4942ac79c37a6a359c79
institution Directory Open Access Journal
issn 1551-0018
language English
last_indexed 2024-04-10T05:46:14Z
publishDate 2023-02-01
publisher AIMS Press
record_format Article
series Mathematical Biosciences and Engineering
spelling doaj.art-38ec195f7aac4942ac79c37a6a359c792023-03-06T01:11:50ZengAIMS PressMathematical Biosciences and Engineering1551-00182023-02-012047453748610.3934/mbe.2023323A method for demand-accurate one-dimensional cutting problems with pattern reductionHaihua Xiao0Qiaokang Liang 1Dan Zhang2Suhua Xiao3Gangzhuo Nie41. College of Electrical and Information Engineering, Hunan University, Changsha 410082, China 2. National Engineering Laboratory for Robot Vision Perception and Control, Changsha 410082, China1. College of Electrical and Information Engineering, Hunan University, Changsha 410082, China 2. National Engineering Laboratory for Robot Vision Perception and Control, Changsha 410082, China3. Department of Mechanical Engineering, York University, Toronto ONM3J1P3, Canada4. College of Electromechanical Engineering, Guangdong Polytechnic Normal University, Guangzhou 510635, China5. Aluminum Corporation of China, Beijing 100000, ChinaThe main objective in the one-dimensional cutting stock problem (1D-CSP) is to minimize material costs. In practice, it is useful to focus on auxiliary objectives, one of which is to reduce the number of different cutting patterns. This paper discusses the classical integer IDCSP, where only one type of stock object is included. Meanwhile, the demands of various items must be precisely satisfied in the constraints. In other words, no overproduction or underproduction is allowed. Therefore, to solve this issue, a variable-to-constant method based on a new mathematical model is proposed. In addition, we integrate the approach with two other representative methods to demonstrate its effectiveness. Both benchmark instances and real instances are used in the experiments, and the results show that the methodology is effective in reducing patterns. In particular, in terms of the solutions to the real-life instances, the proposed approach presents a 31.93 to 37.6% pattern reduction compared to other similar methods (including commercial software).https://www.aimspress.com/article/doi/10.3934/mbe.2023323?viewType=HTMLcuttingcutting stockcutting patterncolumn generationoptimization algorithms
spellingShingle Haihua Xiao
Qiaokang Liang
Dan Zhang
Suhua Xiao
Gangzhuo Nie
A method for demand-accurate one-dimensional cutting problems with pattern reduction
Mathematical Biosciences and Engineering
cutting
cutting stock
cutting pattern
column generation
optimization algorithms
title A method for demand-accurate one-dimensional cutting problems with pattern reduction
title_full A method for demand-accurate one-dimensional cutting problems with pattern reduction
title_fullStr A method for demand-accurate one-dimensional cutting problems with pattern reduction
title_full_unstemmed A method for demand-accurate one-dimensional cutting problems with pattern reduction
title_short A method for demand-accurate one-dimensional cutting problems with pattern reduction
title_sort method for demand accurate one dimensional cutting problems with pattern reduction
topic cutting
cutting stock
cutting pattern
column generation
optimization algorithms
url https://www.aimspress.com/article/doi/10.3934/mbe.2023323?viewType=HTML
work_keys_str_mv AT haihuaxiao amethodfordemandaccurateonedimensionalcuttingproblemswithpatternreduction
AT qiaokangliang amethodfordemandaccurateonedimensionalcuttingproblemswithpatternreduction
AT danzhang amethodfordemandaccurateonedimensionalcuttingproblemswithpatternreduction
AT suhuaxiao amethodfordemandaccurateonedimensionalcuttingproblemswithpatternreduction
AT gangzhuonie amethodfordemandaccurateonedimensionalcuttingproblemswithpatternreduction
AT haihuaxiao methodfordemandaccurateonedimensionalcuttingproblemswithpatternreduction
AT qiaokangliang methodfordemandaccurateonedimensionalcuttingproblemswithpatternreduction
AT danzhang methodfordemandaccurateonedimensionalcuttingproblemswithpatternreduction
AT suhuaxiao methodfordemandaccurateonedimensionalcuttingproblemswithpatternreduction
AT gangzhuonie methodfordemandaccurateonedimensionalcuttingproblemswithpatternreduction