Machine Learning for Head and Neck Cancer: A Safe Bet?—A Clinically Oriented Systematic Review for the Radiation Oncologist

Background and PurposeMachine learning (ML) is emerging as a feasible approach to optimize patients’ care path in Radiation Oncology. Applications include autosegmentation, treatment planning optimization, and prediction of oncological and toxicity outcomes. The purpose of this clinically oriented s...

Full description

Bibliographic Details
Main Authors: Stefania Volpe, Matteo Pepa, Mattia Zaffaroni, Federica Bellerba, Riccardo Santamaria, Giulia Marvaso, Lars Johannes Isaksson, Sara Gandini, Anna Starzyńska, Maria Cristina Leonardi, Roberto Orecchia, Daniela Alterio, Barbara Alicja Jereczek-Fossa
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-11-01
Series:Frontiers in Oncology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fonc.2021.772663/full
Description
Summary:Background and PurposeMachine learning (ML) is emerging as a feasible approach to optimize patients’ care path in Radiation Oncology. Applications include autosegmentation, treatment planning optimization, and prediction of oncological and toxicity outcomes. The purpose of this clinically oriented systematic review is to illustrate the potential and limitations of the most commonly used ML models in solving everyday clinical issues in head and neck cancer (HNC) radiotherapy (RT).Materials and MethodsElectronic databases were screened up to May 2021. Studies dealing with ML and radiomics were considered eligible. The quality of the included studies was rated by an adapted version of the qualitative checklist originally developed by Luo et al. All statistical analyses were performed using R version 3.6.1.ResultsForty-eight studies (21 on autosegmentation, four on treatment planning, 12 on oncological outcome prediction, 10 on toxicity prediction, and one on determinants of postoperative RT) were included in the analysis. The most common imaging modality was computed tomography (CT) (40%) followed by magnetic resonance (MR) (10%). Quantitative image features were considered in nine studies (19%). No significant differences were identified in global and methodological scores when works were stratified per their task (i.e., autosegmentation).Discussion and ConclusionThe range of possible applications of ML in the field of HN Radiation Oncology is wide, albeit this area of research is relatively young. Overall, if not safe yet, ML is most probably a bet worth making.
ISSN:2234-943X