A note on optimal Hermite interpolation in Sobolev spaces

Abstract This paper investigates the optimal Hermite interpolation of Sobolev spaces W ∞ n [ a , b ] $W_{\infty }^{n}[a,b]$ , n ∈ N $n\in \mathbb{N}$ in space L ∞ [ a , b ] $L_{\infty }[a,b]$ and weighted spaces L p , ω [ a , b ] $L_{p,\omega }[a,b]$ , 1 ≤ p < ∞ $1\le p< \infty $ with ω a cont...

Full description

Bibliographic Details
Main Authors: Guiqiao Xu, Xiaochen Yu
Format: Article
Language:English
Published: SpringerOpen 2022-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:https://doi.org/10.1186/s13660-021-02741-5
_version_ 1818979342814806016
author Guiqiao Xu
Xiaochen Yu
author_facet Guiqiao Xu
Xiaochen Yu
author_sort Guiqiao Xu
collection DOAJ
description Abstract This paper investigates the optimal Hermite interpolation of Sobolev spaces W ∞ n [ a , b ] $W_{\infty }^{n}[a,b]$ , n ∈ N $n\in \mathbb{N}$ in space L ∞ [ a , b ] $L_{\infty }[a,b]$ and weighted spaces L p , ω [ a , b ] $L_{p,\omega }[a,b]$ , 1 ≤ p < ∞ $1\le p< \infty $ with ω a continuous-integrable weight function in ( a , b ) $(a,b)$ when the amount of Hermite data is n. We proved that the Lagrange interpolation algorithms based on the zeros of polynomial of degree n with the leading coefficient 1 of the least deviation from zero in L ∞ $L_{\infty }$ (or L p , ω [ a , b ] $L_{p,\omega }[a,b]$ , 1 ≤ p < ∞ $1\le p<\infty $ ) are optimal for W ∞ n [ a , b ] $W_{\infty }^{n}[a,b]$ in L ∞ [ a , b ] $L_{\infty }[a,b]$ (or L p , ω [ a , b ] $L_{p,\omega }[a,b]$ , 1 ≤ p < ∞ $1\le p<\infty $ ). We also give the optimal Hermite interpolation algorithms when we assume the endpoints are included in the interpolation systems.
first_indexed 2024-12-20T16:58:01Z
format Article
id doaj.art-38f6061e488a478695b4453dbef2e4dc
institution Directory Open Access Journal
issn 1029-242X
language English
last_indexed 2024-12-20T16:58:01Z
publishDate 2022-01-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-38f6061e488a478695b4453dbef2e4dc2022-12-21T19:32:39ZengSpringerOpenJournal of Inequalities and Applications1029-242X2022-01-012022111410.1186/s13660-021-02741-5A note on optimal Hermite interpolation in Sobolev spacesGuiqiao Xu0Xiaochen Yu1Department of Mathematics, Tianjin Normal UniversityDepartment of Mathematics, Tianjin Normal UniversityAbstract This paper investigates the optimal Hermite interpolation of Sobolev spaces W ∞ n [ a , b ] $W_{\infty }^{n}[a,b]$ , n ∈ N $n\in \mathbb{N}$ in space L ∞ [ a , b ] $L_{\infty }[a,b]$ and weighted spaces L p , ω [ a , b ] $L_{p,\omega }[a,b]$ , 1 ≤ p < ∞ $1\le p< \infty $ with ω a continuous-integrable weight function in ( a , b ) $(a,b)$ when the amount of Hermite data is n. We proved that the Lagrange interpolation algorithms based on the zeros of polynomial of degree n with the leading coefficient 1 of the least deviation from zero in L ∞ $L_{\infty }$ (or L p , ω [ a , b ] $L_{p,\omega }[a,b]$ , 1 ≤ p < ∞ $1\le p<\infty $ ) are optimal for W ∞ n [ a , b ] $W_{\infty }^{n}[a,b]$ in L ∞ [ a , b ] $L_{\infty }[a,b]$ (or L p , ω [ a , b ] $L_{p,\omega }[a,b]$ , 1 ≤ p < ∞ $1\le p<\infty $ ). We also give the optimal Hermite interpolation algorithms when we assume the endpoints are included in the interpolation systems.https://doi.org/10.1186/s13660-021-02741-5Optimal Hermite interpolationSobolev spaceWorst-case setting
spellingShingle Guiqiao Xu
Xiaochen Yu
A note on optimal Hermite interpolation in Sobolev spaces
Journal of Inequalities and Applications
Optimal Hermite interpolation
Sobolev space
Worst-case setting
title A note on optimal Hermite interpolation in Sobolev spaces
title_full A note on optimal Hermite interpolation in Sobolev spaces
title_fullStr A note on optimal Hermite interpolation in Sobolev spaces
title_full_unstemmed A note on optimal Hermite interpolation in Sobolev spaces
title_short A note on optimal Hermite interpolation in Sobolev spaces
title_sort note on optimal hermite interpolation in sobolev spaces
topic Optimal Hermite interpolation
Sobolev space
Worst-case setting
url https://doi.org/10.1186/s13660-021-02741-5
work_keys_str_mv AT guiqiaoxu anoteonoptimalhermiteinterpolationinsobolevspaces
AT xiaochenyu anoteonoptimalhermiteinterpolationinsobolevspaces
AT guiqiaoxu noteonoptimalhermiteinterpolationinsobolevspaces
AT xiaochenyu noteonoptimalhermiteinterpolationinsobolevspaces