The Effect of First Metatarsal Shortening and Sagittal Displacement on Forefoot Pressure in MIS Hallux Valgus Correction

Introduction/Purpose: Minimally invasive surgical (MIS) treatment of hallux valgus (HV) deformity is increasing in popularity. A 2mm-diameter burr is used to create a distal first metatarsal osteotomy prior to capital fragment translation and fixation. The metatarsal will shorten by the burr’s diame...

Full description

Bibliographic Details
Main Authors: Andres Lopez MD, Edward T. Haupt MD, Giselle M. Porter BSc(Med), BSc, Yianni Bakaes BSc(Med), Glenn Shi MD, J. Benjamin Jackson MD, MBA, Paisley Myers PhD, Tyler Gonzalez MD, MBA
Format: Article
Language:English
Published: SAGE Publishing 2024-04-01
Series:Foot & Ankle Orthopaedics
Online Access:https://doi.org/10.1177/2473011424S00093
_version_ 1797208345188237312
author Andres Lopez MD
Edward T. Haupt MD
Giselle M. Porter BSc(Med), BSc
Yianni Bakaes BSc(Med)
Glenn Shi MD
J. Benjamin Jackson MD, MBA
Paisley Myers PhD
Tyler Gonzalez MD, MBA
author_facet Andres Lopez MD
Edward T. Haupt MD
Giselle M. Porter BSc(Med), BSc
Yianni Bakaes BSc(Med)
Glenn Shi MD
J. Benjamin Jackson MD, MBA
Paisley Myers PhD
Tyler Gonzalez MD, MBA
author_sort Andres Lopez MD
collection DOAJ
description Introduction/Purpose: Minimally invasive surgical (MIS) treatment of hallux valgus (HV) deformity is increasing in popularity. A 2mm-diameter burr is used to create a distal first metatarsal osteotomy prior to capital fragment translation and fixation. The metatarsal will shorten by the burr’s diameter (2mm). Plantar or dorsal capital fragment displacement may also cause load transference and possibly transfer metatarsalgia. In this study, we examine the effect of MIS HV on forefoot loading mechanics with respect to metatarsal shortening and sagittal plane displacement. Methods: Four lower-limb cadaveric specimens were studied. A pedobarography pressure-sensing mat was used to record forefoot plantar pressure in a controlled weightbearing stance position.10 Control and post-osteotomy measurements were obtained with the capital fragment fixated in 3 possible positions: 0mm, 5mm dorsal, and 5mm plantar displacement. Pedobarography data yielded pressure data within measurable graphical depictions. Raw mean contact pressure measurements were taken under the first and fifth metatarsal heads to establish medial and lateral forefoot loading pressure ratios. A priori power analysis was performed based on previous peer-reviewed pedobarographic data and our study was adequately powered. Results: 40 measurements were recorded and ratios of medial-to-lateral forefoot loading were constructed. Medial forefoot pressure change control versus 0mm displacement, and control versus dorsal displacement was not found to be statistically significant (p=0.525, p=0.55 respectively). Significant medial pressure increase was identified comparing control versus plantar displacement (p=0.006). Lateral pressure increased significantly with dorsal displacement of the osteotomy (p=0.013). Conclusion: MIS hallux valgus correction does not appear to cause increase in lateral forefoot pressure loading when sagittal plane displacements are controlled. Plantar displacement increases medial loading, and dorsal displacement increases lateral loading. The clinician must consider metatarsal head position post-osteotomy, as decrease in medial loading and subsequent increase in lateral loading may lead to lateral forefoot pain and transfer metatarsalgia.
first_indexed 2024-04-24T09:37:20Z
format Article
id doaj.art-3910d181faf44f43b7ffea9b0bdc220a
institution Directory Open Access Journal
issn 2473-0114
language English
last_indexed 2024-04-24T09:37:20Z
publishDate 2024-04-01
publisher SAGE Publishing
record_format Article
series Foot & Ankle Orthopaedics
spelling doaj.art-3910d181faf44f43b7ffea9b0bdc220a2024-04-15T09:04:10ZengSAGE PublishingFoot & Ankle Orthopaedics2473-01142024-04-01910.1177/2473011424S00093The Effect of First Metatarsal Shortening and Sagittal Displacement on Forefoot Pressure in MIS Hallux Valgus CorrectionAndres Lopez MDEdward T. Haupt MDGiselle M. Porter BSc(Med), BScYianni Bakaes BSc(Med)Glenn Shi MDJ. Benjamin Jackson MD, MBAPaisley Myers PhDTyler Gonzalez MD, MBAIntroduction/Purpose: Minimally invasive surgical (MIS) treatment of hallux valgus (HV) deformity is increasing in popularity. A 2mm-diameter burr is used to create a distal first metatarsal osteotomy prior to capital fragment translation and fixation. The metatarsal will shorten by the burr’s diameter (2mm). Plantar or dorsal capital fragment displacement may also cause load transference and possibly transfer metatarsalgia. In this study, we examine the effect of MIS HV on forefoot loading mechanics with respect to metatarsal shortening and sagittal plane displacement. Methods: Four lower-limb cadaveric specimens were studied. A pedobarography pressure-sensing mat was used to record forefoot plantar pressure in a controlled weightbearing stance position.10 Control and post-osteotomy measurements were obtained with the capital fragment fixated in 3 possible positions: 0mm, 5mm dorsal, and 5mm plantar displacement. Pedobarography data yielded pressure data within measurable graphical depictions. Raw mean contact pressure measurements were taken under the first and fifth metatarsal heads to establish medial and lateral forefoot loading pressure ratios. A priori power analysis was performed based on previous peer-reviewed pedobarographic data and our study was adequately powered. Results: 40 measurements were recorded and ratios of medial-to-lateral forefoot loading were constructed. Medial forefoot pressure change control versus 0mm displacement, and control versus dorsal displacement was not found to be statistically significant (p=0.525, p=0.55 respectively). Significant medial pressure increase was identified comparing control versus plantar displacement (p=0.006). Lateral pressure increased significantly with dorsal displacement of the osteotomy (p=0.013). Conclusion: MIS hallux valgus correction does not appear to cause increase in lateral forefoot pressure loading when sagittal plane displacements are controlled. Plantar displacement increases medial loading, and dorsal displacement increases lateral loading. The clinician must consider metatarsal head position post-osteotomy, as decrease in medial loading and subsequent increase in lateral loading may lead to lateral forefoot pain and transfer metatarsalgia.https://doi.org/10.1177/2473011424S00093
spellingShingle Andres Lopez MD
Edward T. Haupt MD
Giselle M. Porter BSc(Med), BSc
Yianni Bakaes BSc(Med)
Glenn Shi MD
J. Benjamin Jackson MD, MBA
Paisley Myers PhD
Tyler Gonzalez MD, MBA
The Effect of First Metatarsal Shortening and Sagittal Displacement on Forefoot Pressure in MIS Hallux Valgus Correction
Foot & Ankle Orthopaedics
title The Effect of First Metatarsal Shortening and Sagittal Displacement on Forefoot Pressure in MIS Hallux Valgus Correction
title_full The Effect of First Metatarsal Shortening and Sagittal Displacement on Forefoot Pressure in MIS Hallux Valgus Correction
title_fullStr The Effect of First Metatarsal Shortening and Sagittal Displacement on Forefoot Pressure in MIS Hallux Valgus Correction
title_full_unstemmed The Effect of First Metatarsal Shortening and Sagittal Displacement on Forefoot Pressure in MIS Hallux Valgus Correction
title_short The Effect of First Metatarsal Shortening and Sagittal Displacement on Forefoot Pressure in MIS Hallux Valgus Correction
title_sort effect of first metatarsal shortening and sagittal displacement on forefoot pressure in mis hallux valgus correction
url https://doi.org/10.1177/2473011424S00093
work_keys_str_mv AT andreslopezmd theeffectoffirstmetatarsalshorteningandsagittaldisplacementonforefootpressureinmishalluxvalguscorrection
AT edwardthauptmd theeffectoffirstmetatarsalshorteningandsagittaldisplacementonforefootpressureinmishalluxvalguscorrection
AT gisellemporterbscmedbsc theeffectoffirstmetatarsalshorteningandsagittaldisplacementonforefootpressureinmishalluxvalguscorrection
AT yiannibakaesbscmed theeffectoffirstmetatarsalshorteningandsagittaldisplacementonforefootpressureinmishalluxvalguscorrection
AT glennshimd theeffectoffirstmetatarsalshorteningandsagittaldisplacementonforefootpressureinmishalluxvalguscorrection
AT jbenjaminjacksonmdmba theeffectoffirstmetatarsalshorteningandsagittaldisplacementonforefootpressureinmishalluxvalguscorrection
AT paisleymyersphd theeffectoffirstmetatarsalshorteningandsagittaldisplacementonforefootpressureinmishalluxvalguscorrection
AT tylergonzalezmdmba theeffectoffirstmetatarsalshorteningandsagittaldisplacementonforefootpressureinmishalluxvalguscorrection
AT andreslopezmd effectoffirstmetatarsalshorteningandsagittaldisplacementonforefootpressureinmishalluxvalguscorrection
AT edwardthauptmd effectoffirstmetatarsalshorteningandsagittaldisplacementonforefootpressureinmishalluxvalguscorrection
AT gisellemporterbscmedbsc effectoffirstmetatarsalshorteningandsagittaldisplacementonforefootpressureinmishalluxvalguscorrection
AT yiannibakaesbscmed effectoffirstmetatarsalshorteningandsagittaldisplacementonforefootpressureinmishalluxvalguscorrection
AT glennshimd effectoffirstmetatarsalshorteningandsagittaldisplacementonforefootpressureinmishalluxvalguscorrection
AT jbenjaminjacksonmdmba effectoffirstmetatarsalshorteningandsagittaldisplacementonforefootpressureinmishalluxvalguscorrection
AT paisleymyersphd effectoffirstmetatarsalshorteningandsagittaldisplacementonforefootpressureinmishalluxvalguscorrection
AT tylergonzalezmdmba effectoffirstmetatarsalshorteningandsagittaldisplacementonforefootpressureinmishalluxvalguscorrection