Is the ocean surface a source of nitrous acid (HONO) in the marine boundary layer?

<p>Nitrous acid, <span class="inline-formula">HONO</span>, is a key net photolytic precursor to <span class="inline-formula">OH</span> radicals in the atmospheric boundary layer. As <span class="inline-formula">OH</span> is the...

Full description

Bibliographic Details
Main Authors: L. R. Crilley, L. J. Kramer, F. D. Pope, C. Reed, J. D. Lee, L. J. Carpenter, L. D. J. Hollis, S. M. Ball, W. J. Bloss
Format: Article
Language:English
Published: Copernicus Publications 2021-12-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/21/18213/2021/acp-21-18213-2021.pdf
_version_ 1819004476237807616
author L. R. Crilley
L. R. Crilley
L. J. Kramer
L. J. Kramer
F. D. Pope
C. Reed
C. Reed
J. D. Lee
L. J. Carpenter
L. D. J. Hollis
S. M. Ball
W. J. Bloss
author_facet L. R. Crilley
L. R. Crilley
L. J. Kramer
L. J. Kramer
F. D. Pope
C. Reed
C. Reed
J. D. Lee
L. J. Carpenter
L. D. J. Hollis
S. M. Ball
W. J. Bloss
author_sort L. R. Crilley
collection DOAJ
description <p>Nitrous acid, <span class="inline-formula">HONO</span>, is a key net photolytic precursor to <span class="inline-formula">OH</span> radicals in the atmospheric boundary layer. As <span class="inline-formula">OH</span> is the dominant atmospheric oxidant, driving the removal of many primary pollutants and the formation of secondary species, a quantitative understanding of <span class="inline-formula">HONO</span> sources is important to predict atmospheric oxidising capacity. While a number of <span class="inline-formula">HONO</span> formation mechanisms have been identified, recent work has ascribed significant importance to the dark, ocean-surface-mediated conversion of <span class="inline-formula">NO<sub>2</sub></span> to <span class="inline-formula">HONO</span> in the coastal marine boundary layer. In order to evaluate the role of this mechanism, here we analyse measurements of <span class="inline-formula">HONO</span> and related species obtained at two contrasting coastal locations – Cabo Verde (Atlantic Ocean, denoted Cape Verde herein), representative of the clean remote tropical marine boundary layer, and Weybourne (United Kingdom), representative of semi-polluted northern European coastal waters. As expected, higher average concentrations of <span class="inline-formula">HONO</span> (70 ppt) were observed in marine air for the more anthropogenically influenced Weybourne location compared to Cape Verde (<span class="inline-formula">HONO</span> <span class="inline-formula"><i>&lt;</i></span> 5 ppt). At both sites, the approximately constant <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">HONO</mi><mspace linebreak="nobreak" width="0.125em"/><mo>/</mo><mspace width="0.125em" linebreak="nobreak"/><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="65pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="2b45f25831a74b6b87a56a771d67638f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-18213-2021-ie00001.svg" width="65pt" height="14pt" src="acp-21-18213-2021-ie00001.png"/></svg:svg></span></span> ratio at night pointed to a low importance for the dark, ocean-surface-mediated conversion of <span class="inline-formula">NO<sub>2</sub></span> into <span class="inline-formula">HONO</span>, whereas the midday maximum in the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">HONO</mi><mspace width="0.125em" linebreak="nobreak"/><mo>/</mo><mspace width="0.125em" linebreak="nobreak"/><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="65pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="180349e123cb250f82d08dca8e4cb15f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-18213-2021-ie00002.svg" width="65pt" height="14pt" src="acp-21-18213-2021-ie00002.png"/></svg:svg></span></span> ratios indicated significant contributions from photo-enhanced <span class="inline-formula">HONO</span> formation mechanisms (or other sources). We obtained an upper limit to the rate coefficient of dark, ocean-surface <span class="inline-formula">HONO</span>-to-<span class="inline-formula">NO<sub>2</sub></span> conversion of <span class="inline-formula"><i>C</i><sub>HONO</sub></span> <span class="inline-formula">=</span> 0.0011 ppb h<span class="inline-formula"><sup>−1</sup></span> from the Cape Verde observations; this is a factor of 5 lower than the slowest rate reported previously. These results point to significant geographical variation in the predominant <span class="inline-formula">HONO</span> formation mechanisms in marine environments and indicate that caution is required when extrapolating the importance of such mechanisms from individual study locations to assess regional and/or global impacts on oxidising capacity. As a significant fraction of atmospheric processing occurs in the marine boundary layer, particularly in the tropics, better constraint of the possible ocean surface source of <span class="inline-formula">HONO</span> is important for a quantitative understanding of chemical processing of primary trace gases in the global atmospheric boundary layer and associated impacts upon air pollution and climate.</p>
first_indexed 2024-12-20T23:37:30Z
format Article
id doaj.art-391e163535f340799c5e34e05a359d3a
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-20T23:37:30Z
publishDate 2021-12-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-391e163535f340799c5e34e05a359d3a2022-12-21T19:23:10ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242021-12-0121182131822510.5194/acp-21-18213-2021Is the ocean surface a source of nitrous acid (HONO) in the marine boundary layer?L. R. Crilley0L. R. Crilley1L. J. Kramer2L. J. Kramer3F. D. Pope4C. Reed5C. Reed6J. D. Lee7L. J. Carpenter8L. D. J. Hollis9S. M. Ball10W. J. Bloss11School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdomnow at: Department of Chemistry, York University, Toronto, ON, CanadaSchool of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdomnow at: Ricardo Energy & Environment, Harwell, Oxfordshire, United Kingdom.School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United KingdomWolfson Atmospheric Chemistry Laboratory (WACL), Department of Chemistry, University of York, Heslington, York, United Kingdomnow at: FAAM Airborne Laboratory, Building 146, Cranfield University, Cranfield, United KingdomWolfson Atmospheric Chemistry Laboratory (WACL), Department of Chemistry, University of York, Heslington, York, United KingdomWolfson Atmospheric Chemistry Laboratory (WACL), Department of Chemistry, University of York, Heslington, York, United KingdomSchool of Chemistry, University of Leicester, Leicester, United KingdomSchool of Chemistry, University of Leicester, Leicester, United KingdomSchool of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom<p>Nitrous acid, <span class="inline-formula">HONO</span>, is a key net photolytic precursor to <span class="inline-formula">OH</span> radicals in the atmospheric boundary layer. As <span class="inline-formula">OH</span> is the dominant atmospheric oxidant, driving the removal of many primary pollutants and the formation of secondary species, a quantitative understanding of <span class="inline-formula">HONO</span> sources is important to predict atmospheric oxidising capacity. While a number of <span class="inline-formula">HONO</span> formation mechanisms have been identified, recent work has ascribed significant importance to the dark, ocean-surface-mediated conversion of <span class="inline-formula">NO<sub>2</sub></span> to <span class="inline-formula">HONO</span> in the coastal marine boundary layer. In order to evaluate the role of this mechanism, here we analyse measurements of <span class="inline-formula">HONO</span> and related species obtained at two contrasting coastal locations – Cabo Verde (Atlantic Ocean, denoted Cape Verde herein), representative of the clean remote tropical marine boundary layer, and Weybourne (United Kingdom), representative of semi-polluted northern European coastal waters. As expected, higher average concentrations of <span class="inline-formula">HONO</span> (70 ppt) were observed in marine air for the more anthropogenically influenced Weybourne location compared to Cape Verde (<span class="inline-formula">HONO</span> <span class="inline-formula"><i>&lt;</i></span> 5 ppt). At both sites, the approximately constant <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">HONO</mi><mspace linebreak="nobreak" width="0.125em"/><mo>/</mo><mspace width="0.125em" linebreak="nobreak"/><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="65pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="2b45f25831a74b6b87a56a771d67638f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-18213-2021-ie00001.svg" width="65pt" height="14pt" src="acp-21-18213-2021-ie00001.png"/></svg:svg></span></span> ratio at night pointed to a low importance for the dark, ocean-surface-mediated conversion of <span class="inline-formula">NO<sub>2</sub></span> into <span class="inline-formula">HONO</span>, whereas the midday maximum in the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">HONO</mi><mspace width="0.125em" linebreak="nobreak"/><mo>/</mo><mspace width="0.125em" linebreak="nobreak"/><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="65pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="180349e123cb250f82d08dca8e4cb15f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-18213-2021-ie00002.svg" width="65pt" height="14pt" src="acp-21-18213-2021-ie00002.png"/></svg:svg></span></span> ratios indicated significant contributions from photo-enhanced <span class="inline-formula">HONO</span> formation mechanisms (or other sources). We obtained an upper limit to the rate coefficient of dark, ocean-surface <span class="inline-formula">HONO</span>-to-<span class="inline-formula">NO<sub>2</sub></span> conversion of <span class="inline-formula"><i>C</i><sub>HONO</sub></span> <span class="inline-formula">=</span> 0.0011 ppb h<span class="inline-formula"><sup>−1</sup></span> from the Cape Verde observations; this is a factor of 5 lower than the slowest rate reported previously. These results point to significant geographical variation in the predominant <span class="inline-formula">HONO</span> formation mechanisms in marine environments and indicate that caution is required when extrapolating the importance of such mechanisms from individual study locations to assess regional and/or global impacts on oxidising capacity. As a significant fraction of atmospheric processing occurs in the marine boundary layer, particularly in the tropics, better constraint of the possible ocean surface source of <span class="inline-formula">HONO</span> is important for a quantitative understanding of chemical processing of primary trace gases in the global atmospheric boundary layer and associated impacts upon air pollution and climate.</p>https://acp.copernicus.org/articles/21/18213/2021/acp-21-18213-2021.pdf
spellingShingle L. R. Crilley
L. R. Crilley
L. J. Kramer
L. J. Kramer
F. D. Pope
C. Reed
C. Reed
J. D. Lee
L. J. Carpenter
L. D. J. Hollis
S. M. Ball
W. J. Bloss
Is the ocean surface a source of nitrous acid (HONO) in the marine boundary layer?
Atmospheric Chemistry and Physics
title Is the ocean surface a source of nitrous acid (HONO) in the marine boundary layer?
title_full Is the ocean surface a source of nitrous acid (HONO) in the marine boundary layer?
title_fullStr Is the ocean surface a source of nitrous acid (HONO) in the marine boundary layer?
title_full_unstemmed Is the ocean surface a source of nitrous acid (HONO) in the marine boundary layer?
title_short Is the ocean surface a source of nitrous acid (HONO) in the marine boundary layer?
title_sort is the ocean surface a source of nitrous acid hono in the marine boundary layer
url https://acp.copernicus.org/articles/21/18213/2021/acp-21-18213-2021.pdf
work_keys_str_mv AT lrcrilley istheoceansurfaceasourceofnitrousacidhonointhemarineboundarylayer
AT lrcrilley istheoceansurfaceasourceofnitrousacidhonointhemarineboundarylayer
AT ljkramer istheoceansurfaceasourceofnitrousacidhonointhemarineboundarylayer
AT ljkramer istheoceansurfaceasourceofnitrousacidhonointhemarineboundarylayer
AT fdpope istheoceansurfaceasourceofnitrousacidhonointhemarineboundarylayer
AT creed istheoceansurfaceasourceofnitrousacidhonointhemarineboundarylayer
AT creed istheoceansurfaceasourceofnitrousacidhonointhemarineboundarylayer
AT jdlee istheoceansurfaceasourceofnitrousacidhonointhemarineboundarylayer
AT ljcarpenter istheoceansurfaceasourceofnitrousacidhonointhemarineboundarylayer
AT ldjhollis istheoceansurfaceasourceofnitrousacidhonointhemarineboundarylayer
AT smball istheoceansurfaceasourceofnitrousacidhonointhemarineboundarylayer
AT wjbloss istheoceansurfaceasourceofnitrousacidhonointhemarineboundarylayer