Electrostatic catalysis of a click reaction in a microfluidic cell

Abstract Electric fields have been highlighted as a smart reagent in nature’s enzymatic machinery, as they can directly trigger or accelerate chemical processes with stereo- and regio-specificity. In enzymatic catalysis, controlled mass transport of chemical species is also key in facilitating the a...

Full description

Bibliographic Details
Main Authors: Semih Sevim, Roger Sanchis-Gual, Carlos Franco, Albert C. Aragonès, Nadim Darwish, Donghoon Kim, Rosaria Anna Picca, Bradley J. Nelson, Eliseo Ruiz, Salvador Pané, Ismael Díez-Pérez, Josep Puigmartí-Luis
Format: Article
Language:English
Published: Nature Portfolio 2024-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-44716-2
_version_ 1797276389269831680
author Semih Sevim
Roger Sanchis-Gual
Carlos Franco
Albert C. Aragonès
Nadim Darwish
Donghoon Kim
Rosaria Anna Picca
Bradley J. Nelson
Eliseo Ruiz
Salvador Pané
Ismael Díez-Pérez
Josep Puigmartí-Luis
author_facet Semih Sevim
Roger Sanchis-Gual
Carlos Franco
Albert C. Aragonès
Nadim Darwish
Donghoon Kim
Rosaria Anna Picca
Bradley J. Nelson
Eliseo Ruiz
Salvador Pané
Ismael Díez-Pérez
Josep Puigmartí-Luis
author_sort Semih Sevim
collection DOAJ
description Abstract Electric fields have been highlighted as a smart reagent in nature’s enzymatic machinery, as they can directly trigger or accelerate chemical processes with stereo- and regio-specificity. In enzymatic catalysis, controlled mass transport of chemical species is also key in facilitating the availability of reactants in the active reaction site. However, recent progress in developing a clean catalysis that profits from oriented electric fields is limited to theoretical and experimental studies at the single molecule level, where both the control over mass transport and scalability cannot be tested. Here, we quantify the electrostatic catalysis of a prototypical Huisgen cycloaddition in a large-area electrode surface and directly compare its performance to the conventional Cu(I) catalysis. Our custom-built microfluidic cell enhances reagent transport towards the electrified reactive interface. This continuous-flow microfluidic electrostatic reactor is an example of an electric-field driven platform where clean large-scale electrostatic catalytic processes can be efficiently implemented and regulated.
first_indexed 2024-03-07T15:27:36Z
format Article
id doaj.art-3922ca7463584fb4814cf95941ca94bd
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-03-07T15:27:36Z
publishDate 2024-01-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-3922ca7463584fb4814cf95941ca94bd2024-03-05T16:35:54ZengNature PortfolioNature Communications2041-17232024-01-011511910.1038/s41467-024-44716-2Electrostatic catalysis of a click reaction in a microfluidic cellSemih Sevim0Roger Sanchis-Gual1Carlos Franco2Albert C. Aragonès3Nadim Darwish4Donghoon Kim5Rosaria Anna Picca6Bradley J. Nelson7Eliseo Ruiz8Salvador Pané9Ismael Díez-Pérez10Josep Puigmartí-Luis11Institute of Robotics and Intelligent Systems, ETH ZurichInstitute of Robotics and Intelligent Systems, ETH ZurichInstitute of Robotics and Intelligent Systems, ETH ZurichDepartament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB)School of Molecular and Life Sciences, Curtin UniversityInstitute of Robotics and Intelligent Systems, ETH ZurichChemistry Department, University of Bari “Aldo Moro”Institute of Robotics and Intelligent Systems, ETH ZurichDepartament de Química Inorgànica i Orgànica, Institut de Química Teòrica i Computacional, University of Barcelona (UB)Institute of Robotics and Intelligent Systems, ETH ZurichDepartment of Chemistry, Faculty of Natural, Mathematical & Engineering Sciences, King’s College LondonDepartament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB)Abstract Electric fields have been highlighted as a smart reagent in nature’s enzymatic machinery, as they can directly trigger or accelerate chemical processes with stereo- and regio-specificity. In enzymatic catalysis, controlled mass transport of chemical species is also key in facilitating the availability of reactants in the active reaction site. However, recent progress in developing a clean catalysis that profits from oriented electric fields is limited to theoretical and experimental studies at the single molecule level, where both the control over mass transport and scalability cannot be tested. Here, we quantify the electrostatic catalysis of a prototypical Huisgen cycloaddition in a large-area electrode surface and directly compare its performance to the conventional Cu(I) catalysis. Our custom-built microfluidic cell enhances reagent transport towards the electrified reactive interface. This continuous-flow microfluidic electrostatic reactor is an example of an electric-field driven platform where clean large-scale electrostatic catalytic processes can be efficiently implemented and regulated.https://doi.org/10.1038/s41467-024-44716-2
spellingShingle Semih Sevim
Roger Sanchis-Gual
Carlos Franco
Albert C. Aragonès
Nadim Darwish
Donghoon Kim
Rosaria Anna Picca
Bradley J. Nelson
Eliseo Ruiz
Salvador Pané
Ismael Díez-Pérez
Josep Puigmartí-Luis
Electrostatic catalysis of a click reaction in a microfluidic cell
Nature Communications
title Electrostatic catalysis of a click reaction in a microfluidic cell
title_full Electrostatic catalysis of a click reaction in a microfluidic cell
title_fullStr Electrostatic catalysis of a click reaction in a microfluidic cell
title_full_unstemmed Electrostatic catalysis of a click reaction in a microfluidic cell
title_short Electrostatic catalysis of a click reaction in a microfluidic cell
title_sort electrostatic catalysis of a click reaction in a microfluidic cell
url https://doi.org/10.1038/s41467-024-44716-2
work_keys_str_mv AT semihsevim electrostaticcatalysisofaclickreactioninamicrofluidiccell
AT rogersanchisgual electrostaticcatalysisofaclickreactioninamicrofluidiccell
AT carlosfranco electrostaticcatalysisofaclickreactioninamicrofluidiccell
AT albertcaragones electrostaticcatalysisofaclickreactioninamicrofluidiccell
AT nadimdarwish electrostaticcatalysisofaclickreactioninamicrofluidiccell
AT donghoonkim electrostaticcatalysisofaclickreactioninamicrofluidiccell
AT rosariaannapicca electrostaticcatalysisofaclickreactioninamicrofluidiccell
AT bradleyjnelson electrostaticcatalysisofaclickreactioninamicrofluidiccell
AT eliseoruiz electrostaticcatalysisofaclickreactioninamicrofluidiccell
AT salvadorpane electrostaticcatalysisofaclickreactioninamicrofluidiccell
AT ismaeldiezperez electrostaticcatalysisofaclickreactioninamicrofluidiccell
AT joseppuigmartiluis electrostaticcatalysisofaclickreactioninamicrofluidiccell