TSNAD: an integrated software for cancer somatic mutation and tumour-specific neoantigen detection

Tumour antigens have attracted much attention because of their importance to cancer diagnosis, prognosis and targeted therapy. With the development of cancer genomics, the identification of tumour-specific neoantigens became possible, which is a crucial step for cancer immunotherapy. In this study,...

Full description

Bibliographic Details
Main Authors: Zhan Zhou, Xingzheng Lyu, Jingcheng Wu, Xiaoyue Yang, Shanshan Wu, Jie Zhou, Xun Gu, Zhixi Su, Shuqing Chen
Format: Article
Language:English
Published: The Royal Society 2017-01-01
Series:Royal Society Open Science
Subjects:
Online Access:https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.170050
Description
Summary:Tumour antigens have attracted much attention because of their importance to cancer diagnosis, prognosis and targeted therapy. With the development of cancer genomics, the identification of tumour-specific neoantigens became possible, which is a crucial step for cancer immunotherapy. In this study, we developed software called the tumour-specific neoantigen detector for detecting cancer somatic mutations following the best practices of the genome analysis toolkit and predicting potential tumour-specific neoantigens, which could be either extracellular mutations of membrane proteins or mutated peptides presented by class I major histocompatibility complex molecules. This pipeline was beneficial to the biologist with little programmatic background. We also applied the software to the somatic mutations from the International Cancer Genome Consortium database to predict numerous potential tumour-specific neoantigens. This software is freely available from https://github.com/jiujiezz/tsnad.
ISSN:2054-5703