Enamel surface remineralization: Using synthetic nanohydroxyapatite
Objective: The purpose of this study was to evaluate the effects of synthetically processed hydroxyapatite particles in remineralization of the early enamel lesions in comparison with 2% sodium fluoride. Materials and Methods: Thirty sound human premolars were divided into nanohydroxyapatite group (...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wolters Kluwer Medknow Publications
2012-01-01
|
Series: | Contemporary Clinical Dentistry |
Subjects: | |
Online Access: | http://www.contempclindent.org/article.asp?issn=0976-237X;year=2012;volume=3;issue=4;spage=433;epage=436;aulast=Swarup |
Summary: | Objective: The purpose of this study was to evaluate the effects of synthetically processed hydroxyapatite particles in remineralization of the early enamel lesions in comparison with 2% sodium fluoride. Materials and Methods: Thirty sound human premolars were divided into nanohydroxyapatite group (n0 = 15) and the sodium fluoride group (n = 15). The specimens were subjected to demineralization before being coated with 10% aqueous slurry of 20 nm nanohydroxyapatite or 2% sodium fluoride. The remineralizing efficacy of the materials was evaluated using surface microhardness (SMH) measurements, scanning microscopic analysis and analysis of the Ca/P ratio of the surface enamel. Data analysis was carried out using paired t-test and independent t-test. Results: The results showed that the nanohydroxyapatite group produced a surface morphology close to the biologic enamel, the increase in mineral content (Ca/P ratio) was more significant in the nanohydroxyapatite group ( P < 0.05) and the SMH recovery was closer to the baseline level in the nanohydroxyapatite group (P < 0.05). Both the groups did not show any significant difference in thickness (P > 0.05). Conclusion: The use of biomimetic nanohydroxyapatite as a remineralizing agent holds promise as a new synthetic enamel biocompatible material to repair early carious lesions. |
---|---|
ISSN: | 0976-237X 0976-2361 |