Reliability of structural MRI measurements: The effects of scan session, head tilt, inter-scan interval, acquisition sequence, FreeSurfer version and processing stream
Background: Large-scale longitudinal and multi-centre studies are used to explore neuroimaging markers of normal ageing, and neurodegenerative and mental health disorders. Longitudinal changes in brain structure are typically small, therefore the reliability of automated techniques is crucial. Deter...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2022-02-01
|
Series: | NeuroImage |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S1053811921010235 |
_version_ | 1819283877085052928 |
---|---|
author | Emily P Hedges Mihail Dimitrov Uzma Zahid Barbara Brito Vega Shuqing Si Hannah Dickson Philip McGuire Steven Williams Gareth J Barker Matthew J Kempton |
author_facet | Emily P Hedges Mihail Dimitrov Uzma Zahid Barbara Brito Vega Shuqing Si Hannah Dickson Philip McGuire Steven Williams Gareth J Barker Matthew J Kempton |
author_sort | Emily P Hedges |
collection | DOAJ |
description | Background: Large-scale longitudinal and multi-centre studies are used to explore neuroimaging markers of normal ageing, and neurodegenerative and mental health disorders. Longitudinal changes in brain structure are typically small, therefore the reliability of automated techniques is crucial. Determining the effects of different factors on reliability allows investigators to control those adversely affecting reliability, calculate statistical power, or even avoid particular brain measures with low reliability. This study examined the impact of several image acquisition and processing factors and documented the test-retest reliability of structural MRI measurements. Methods: In Phase I, 20 healthy adults (11 females; aged 20–30 years) were scanned on two occasions three weeks apart on the same scanner using the ADNI-3 protocol. On each occasion, individuals were scanned twice (repetition), after re-entering the scanner (reposition) and after tilting their head forward. At one year follow-up, nine returning individuals and 11 new volunteers were recruited for Phase II (11 females; aged 22–31 years). Scans were acquired on two different scanners using the ADNI-2 and ADNI-3 protocols. Structural images were processed using FreeSurfer (v5.3.0, 6.0.0 and 7.1.0) to provide subcortical and cortical volume, cortical surface area and thickness measurements. Intra-class correlation coefficients (ICC) were calculated to estimate test-retest reliability. We examined the effect of repetition, reposition, head tilt, time between scans, MRI sequence and scanner on reliability of structural brain measurements. Mean percentage differences were also calculated in supplementary analyses. Results: Using the FreeSurfer v7.1.0 longitudinal pipeline, we observed high reliability for subcortical and cortical volumes, and cortical surface areas at repetition, reposition, three weeks and one year (mean ICCs>0.97). Cortical thickness reliability was lower (mean ICCs>0.82). Head tilt had the greatest adverse impact on ICC estimates, for example reducing mean right cortical thickness to ICC=0.74. In contrast, changes in ADNI sequence or MRI scanner had a minimal effect. We observed an increase in reliability for updated FreeSurfer versions, with the longitudinal pipeline consistently having a higher reliability than the cross-sectional pipeline. Discussion: Longitudinal studies should monitor or control head tilt to maximise reliability. We provided the ICC estimates and mean percentage differences for all FreeSurfer brain regions, which may inform power analyses for clinical studies and have implications for the design of future longitudinal studies. |
first_indexed | 2024-12-24T01:38:27Z |
format | Article |
id | doaj.art-39429c6d96994dedb3b1bfdabb5b3dbd |
institution | Directory Open Access Journal |
issn | 1095-9572 |
language | English |
last_indexed | 2024-12-24T01:38:27Z |
publishDate | 2022-02-01 |
publisher | Elsevier |
record_format | Article |
series | NeuroImage |
spelling | doaj.art-39429c6d96994dedb3b1bfdabb5b3dbd2022-12-21T17:22:07ZengElsevierNeuroImage1095-95722022-02-01246118751Reliability of structural MRI measurements: The effects of scan session, head tilt, inter-scan interval, acquisition sequence, FreeSurfer version and processing streamEmily P Hedges0Mihail Dimitrov1Uzma Zahid2Barbara Brito Vega3Shuqing Si4Hannah Dickson5Philip McGuire6Steven Williams7Gareth J Barker8Matthew J Kempton9Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, United Kingdom; Corresponding author.Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, United KingdomDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, United KingdomDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, United KingdomDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, United KingdomDepartment of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, United KingdomDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, United KingdomDepartment of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, United KingdomDepartment of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, United KingdomDepartment of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, United KingdomBackground: Large-scale longitudinal and multi-centre studies are used to explore neuroimaging markers of normal ageing, and neurodegenerative and mental health disorders. Longitudinal changes in brain structure are typically small, therefore the reliability of automated techniques is crucial. Determining the effects of different factors on reliability allows investigators to control those adversely affecting reliability, calculate statistical power, or even avoid particular brain measures with low reliability. This study examined the impact of several image acquisition and processing factors and documented the test-retest reliability of structural MRI measurements. Methods: In Phase I, 20 healthy adults (11 females; aged 20–30 years) were scanned on two occasions three weeks apart on the same scanner using the ADNI-3 protocol. On each occasion, individuals were scanned twice (repetition), after re-entering the scanner (reposition) and after tilting their head forward. At one year follow-up, nine returning individuals and 11 new volunteers were recruited for Phase II (11 females; aged 22–31 years). Scans were acquired on two different scanners using the ADNI-2 and ADNI-3 protocols. Structural images were processed using FreeSurfer (v5.3.0, 6.0.0 and 7.1.0) to provide subcortical and cortical volume, cortical surface area and thickness measurements. Intra-class correlation coefficients (ICC) were calculated to estimate test-retest reliability. We examined the effect of repetition, reposition, head tilt, time between scans, MRI sequence and scanner on reliability of structural brain measurements. Mean percentage differences were also calculated in supplementary analyses. Results: Using the FreeSurfer v7.1.0 longitudinal pipeline, we observed high reliability for subcortical and cortical volumes, and cortical surface areas at repetition, reposition, three weeks and one year (mean ICCs>0.97). Cortical thickness reliability was lower (mean ICCs>0.82). Head tilt had the greatest adverse impact on ICC estimates, for example reducing mean right cortical thickness to ICC=0.74. In contrast, changes in ADNI sequence or MRI scanner had a minimal effect. We observed an increase in reliability for updated FreeSurfer versions, with the longitudinal pipeline consistently having a higher reliability than the cross-sectional pipeline. Discussion: Longitudinal studies should monitor or control head tilt to maximise reliability. We provided the ICC estimates and mean percentage differences for all FreeSurfer brain regions, which may inform power analyses for clinical studies and have implications for the design of future longitudinal studies.http://www.sciencedirect.com/science/article/pii/S1053811921010235Structural MRILongitudinalReproducibilityMorphology |
spellingShingle | Emily P Hedges Mihail Dimitrov Uzma Zahid Barbara Brito Vega Shuqing Si Hannah Dickson Philip McGuire Steven Williams Gareth J Barker Matthew J Kempton Reliability of structural MRI measurements: The effects of scan session, head tilt, inter-scan interval, acquisition sequence, FreeSurfer version and processing stream NeuroImage Structural MRI Longitudinal Reproducibility Morphology |
title | Reliability of structural MRI measurements: The effects of scan session, head tilt, inter-scan interval, acquisition sequence, FreeSurfer version and processing stream |
title_full | Reliability of structural MRI measurements: The effects of scan session, head tilt, inter-scan interval, acquisition sequence, FreeSurfer version and processing stream |
title_fullStr | Reliability of structural MRI measurements: The effects of scan session, head tilt, inter-scan interval, acquisition sequence, FreeSurfer version and processing stream |
title_full_unstemmed | Reliability of structural MRI measurements: The effects of scan session, head tilt, inter-scan interval, acquisition sequence, FreeSurfer version and processing stream |
title_short | Reliability of structural MRI measurements: The effects of scan session, head tilt, inter-scan interval, acquisition sequence, FreeSurfer version and processing stream |
title_sort | reliability of structural mri measurements the effects of scan session head tilt inter scan interval acquisition sequence freesurfer version and processing stream |
topic | Structural MRI Longitudinal Reproducibility Morphology |
url | http://www.sciencedirect.com/science/article/pii/S1053811921010235 |
work_keys_str_mv | AT emilyphedges reliabilityofstructuralmrimeasurementstheeffectsofscansessionheadtiltinterscanintervalacquisitionsequencefreesurferversionandprocessingstream AT mihaildimitrov reliabilityofstructuralmrimeasurementstheeffectsofscansessionheadtiltinterscanintervalacquisitionsequencefreesurferversionandprocessingstream AT uzmazahid reliabilityofstructuralmrimeasurementstheeffectsofscansessionheadtiltinterscanintervalacquisitionsequencefreesurferversionandprocessingstream AT barbarabritovega reliabilityofstructuralmrimeasurementstheeffectsofscansessionheadtiltinterscanintervalacquisitionsequencefreesurferversionandprocessingstream AT shuqingsi reliabilityofstructuralmrimeasurementstheeffectsofscansessionheadtiltinterscanintervalacquisitionsequencefreesurferversionandprocessingstream AT hannahdickson reliabilityofstructuralmrimeasurementstheeffectsofscansessionheadtiltinterscanintervalacquisitionsequencefreesurferversionandprocessingstream AT philipmcguire reliabilityofstructuralmrimeasurementstheeffectsofscansessionheadtiltinterscanintervalacquisitionsequencefreesurferversionandprocessingstream AT stevenwilliams reliabilityofstructuralmrimeasurementstheeffectsofscansessionheadtiltinterscanintervalacquisitionsequencefreesurferversionandprocessingstream AT garethjbarker reliabilityofstructuralmrimeasurementstheeffectsofscansessionheadtiltinterscanintervalacquisitionsequencefreesurferversionandprocessingstream AT matthewjkempton reliabilityofstructuralmrimeasurementstheeffectsofscansessionheadtiltinterscanintervalacquisitionsequencefreesurferversionandprocessingstream |