On the high-field characterization of magnetocaloric materials using pulsed magnetic fields

Magnetic refrigeration is a highly active field of research. The recent studies in materials and methods for hydrogen liquefaction and innovative techniques based on multicaloric materials have significantly expanded the scope of the field. For this reason, the proper characterization of materials i...

Full description

Bibliographic Details
Main Authors: C Salazar Mejía, T Niehoff, M Straßheim, E Bykov, Y Skourski, J Wosnitza, T Gottschall
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:JPhys Energy
Subjects:
Online Access:https://doi.org/10.1088/2515-7655/acd47d
Description
Summary:Magnetic refrigeration is a highly active field of research. The recent studies in materials and methods for hydrogen liquefaction and innovative techniques based on multicaloric materials have significantly expanded the scope of the field. For this reason, the proper characterization of materials is now more crucial than ever. This makes it necessary to determine the magnetocaloric and other physical properties under various stimuli such as magnetic fields and mechanical loads. In this work, we present an overview of the characterization techniques established at the Dresden High Magnetic Field Laboratory in recent years, which specializes in using pulsed magnetic fields. The short duration of magnetic-field pulses, lasting only some ten milliseconds, simplifies the process of ensuring adiabatic conditions for the determination of temperature changes, $\Delta T_{\mathrm{ad}}$ . The possibility to measure in the temperature range from 10 to 400 K allows us to study magnetocaloric materials for both room-temperature applications and gas liquefaction. With magnetic-field strengths of up to 50 T, almost every first-order material can be transformed completely. The high field-change rates allow us to observe dynamic effects of phase transitions driven by nucleation and growth as well. We discuss the experimental challenges and advantages of the investigation method using pulsed magnetic fields. We summarize examples for some of the most important material classes including Gd, Laves phases, La–Fe–Si, Mn–Fe–P–Si, Heusler alloys and Fe–Rh. Further, we present the recent developments in simultaneous measurements of temperature change, strain, and magnetization, and introduce a technique to characterize multicaloric materials under applied magnetic field and uniaxial load. We conclude by demonstrating how the use of pulsed fields opens the door to new magnetic-refrigeration principles based on multicalorics and the ‘exploiting-hysteresis’ approach.
ISSN:2515-7655