Mg2+-dependent conformational equilibria in CorA and an integrated view on transport regulation

The CorA family of proteins regulates the homeostasis of divalent metal ions in many bacteria, archaea, and eukaryotic mitochondria, making it an important target in the investigation of the mechanisms of transport and its functional regulation. Although numerous structures of open and closed channe...

Full description

Bibliographic Details
Main Authors: Nicolai Tidemand Johansen, Marta Bonaccorsi, Tone Bengtsen, Andreas Haahr Larsen, Frederik Grønbæk Tidemand, Martin Cramer Pedersen, Pie Huda, Jens Berndtsson, Tamim Darwish, Nageshewar Rao Yepuri, Anne Martel, Thomas Günther Pomorski, Andrea Bertarello, Mark Sansom, Mikaela Rapp, Ramon Crehuet, Tobias Schubeis, Kresten Lindorff-Larsen, Guido Pintacuda, Lise Arleth
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2022-02-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/71887
_version_ 1811201586561548288
author Nicolai Tidemand Johansen
Marta Bonaccorsi
Tone Bengtsen
Andreas Haahr Larsen
Frederik Grønbæk Tidemand
Martin Cramer Pedersen
Pie Huda
Jens Berndtsson
Tamim Darwish
Nageshewar Rao Yepuri
Anne Martel
Thomas Günther Pomorski
Andrea Bertarello
Mark Sansom
Mikaela Rapp
Ramon Crehuet
Tobias Schubeis
Kresten Lindorff-Larsen
Guido Pintacuda
Lise Arleth
author_facet Nicolai Tidemand Johansen
Marta Bonaccorsi
Tone Bengtsen
Andreas Haahr Larsen
Frederik Grønbæk Tidemand
Martin Cramer Pedersen
Pie Huda
Jens Berndtsson
Tamim Darwish
Nageshewar Rao Yepuri
Anne Martel
Thomas Günther Pomorski
Andrea Bertarello
Mark Sansom
Mikaela Rapp
Ramon Crehuet
Tobias Schubeis
Kresten Lindorff-Larsen
Guido Pintacuda
Lise Arleth
author_sort Nicolai Tidemand Johansen
collection DOAJ
description The CorA family of proteins regulates the homeostasis of divalent metal ions in many bacteria, archaea, and eukaryotic mitochondria, making it an important target in the investigation of the mechanisms of transport and its functional regulation. Although numerous structures of open and closed channels are now available for the CorA family, the mechanism of the transport regulation remains elusive. Here, we investigated the conformational distribution and associated dynamic behaviour of the pentameric Mg2+ channel CorA at room temperature using small-angle neutron scattering (SANS) in combination with molecular dynamics (MD) simulations and solid-state nuclear magnetic resonance spectroscopy (NMR). We find that neither the Mg2+-bound closed structure nor the Mg2+-free open forms are sufficient to explain the average conformation of CorA. Our data support the presence of conformational equilibria between multiple states, and we further find a variation in the behaviour of the backbone dynamics with and without Mg2+. We propose that CorA must be in a dynamic equilibrium between different non-conducting states, both symmetric and asymmetric, regardless of bound Mg2+ but that conducting states become more populated in Mg2+-free conditions. These properties are regulated by backbone dynamics and are key to understanding the functional regulation of CorA.
first_indexed 2024-04-12T02:24:09Z
format Article
id doaj.art-3958a7b65ed7431d8436567fd3a41ae6
institution Directory Open Access Journal
issn 2050-084X
language English
last_indexed 2024-04-12T02:24:09Z
publishDate 2022-02-01
publisher eLife Sciences Publications Ltd
record_format Article
series eLife
spelling doaj.art-3958a7b65ed7431d8436567fd3a41ae62022-12-22T03:52:02ZengeLife Sciences Publications LtdeLife2050-084X2022-02-011110.7554/eLife.71887Mg2+-dependent conformational equilibria in CorA and an integrated view on transport regulationNicolai Tidemand Johansen0https://orcid.org/0000-0002-8596-548XMarta Bonaccorsi1https://orcid.org/0000-0001-6177-0701Tone Bengtsen2https://orcid.org/0000-0001-8423-2156Andreas Haahr Larsen3https://orcid.org/0000-0002-2230-2654Frederik Grønbæk Tidemand4https://orcid.org/0000-0001-8914-9626Martin Cramer Pedersen5https://orcid.org/0000-0002-8982-7615Pie Huda6https://orcid.org/0000-0002-2197-4993Jens Berndtsson7https://orcid.org/0000-0001-6627-8134Tamim Darwish8https://orcid.org/0000-0001-7704-1837Nageshewar Rao Yepuri9https://orcid.org/0000-0002-4665-1306Anne Martel10Thomas Günther Pomorski11https://orcid.org/0000-0002-4889-0829Andrea Bertarello12https://orcid.org/0000-0003-3705-1760Mark Sansom13https://orcid.org/0000-0001-6360-7959Mikaela Rapp14https://orcid.org/0000-0002-4401-9518Ramon Crehuet15https://orcid.org/0000-0002-6687-382XTobias Schubeis16https://orcid.org/0000-0003-2203-1126Kresten Lindorff-Larsen17https://orcid.org/0000-0002-4750-6039Guido Pintacuda18https://orcid.org/0000-0001-7757-2144Lise Arleth19https://orcid.org/0000-0002-4694-4299Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Copenhagen, DenmarkCentre de RMN à Très hauts Champs de Lyon (UMR 5280, CNRS / Ecole Normale Supérieure de Lyon / Université Claude Bernard Lyon 1), University of Lyon, Villeurbanne, FranceStructural Biology and NMR Laboratory and Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Department of Biochemistry, University of Oxford, Oxford, United KingdomCondensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark; Department of Biochemistry, University of Oxford, Oxford, United KingdomCondensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Copenhagen, DenmarkCondensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Copenhagen, DenmarkAustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, AustraliaDepartment of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Stockholm, SwedenNational Deuteration Facility, Australian Nuclear Science and Technology Organization, Lucas Heights, AustraliaNational Deuteration Facility, Australian Nuclear Science and Technology Organization, Lucas Heights, AustraliaInstitut Laue–Langevin, Grenoble, FranceSection for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark; Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University, Bochum, GermanyCentre de RMN à Très hauts Champs de Lyon (UMR 5280, CNRS / Ecole Normale Supérieure de Lyon / Université Claude Bernard Lyon 1), University of Lyon, Villeurbanne, FranceDepartment of Biochemistry, University of Oxford, Oxford, United KingdomDepartment of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Stockholm, SwedenStructural Biology and NMR Laboratory and Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; CSIC-Institute for Advanced Chemistry of Catalonia (IQAC), Barcelona, SpainCentre de RMN à Très hauts Champs de Lyon (UMR 5280, CNRS / Ecole Normale Supérieure de Lyon / Université Claude Bernard Lyon 1), University of Lyon, Villeurbanne, FranceStructural Biology and NMR Laboratory and Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, DenmarkCentre de RMN à Très hauts Champs de Lyon (UMR 5280, CNRS / Ecole Normale Supérieure de Lyon / Université Claude Bernard Lyon 1), University of Lyon, Villeurbanne, FranceCondensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Copenhagen, DenmarkThe CorA family of proteins regulates the homeostasis of divalent metal ions in many bacteria, archaea, and eukaryotic mitochondria, making it an important target in the investigation of the mechanisms of transport and its functional regulation. Although numerous structures of open and closed channels are now available for the CorA family, the mechanism of the transport regulation remains elusive. Here, we investigated the conformational distribution and associated dynamic behaviour of the pentameric Mg2+ channel CorA at room temperature using small-angle neutron scattering (SANS) in combination with molecular dynamics (MD) simulations and solid-state nuclear magnetic resonance spectroscopy (NMR). We find that neither the Mg2+-bound closed structure nor the Mg2+-free open forms are sufficient to explain the average conformation of CorA. Our data support the presence of conformational equilibria between multiple states, and we further find a variation in the behaviour of the backbone dynamics with and without Mg2+. We propose that CorA must be in a dynamic equilibrium between different non-conducting states, both symmetric and asymmetric, regardless of bound Mg2+ but that conducting states become more populated in Mg2+-free conditions. These properties are regulated by backbone dynamics and are key to understanding the functional regulation of CorA.https://elifesciences.org/articles/71887cora mg2+ channelsmall-angle neutron scatteringsolid-state nuclear magnetic resonancemetadynamics simulation
spellingShingle Nicolai Tidemand Johansen
Marta Bonaccorsi
Tone Bengtsen
Andreas Haahr Larsen
Frederik Grønbæk Tidemand
Martin Cramer Pedersen
Pie Huda
Jens Berndtsson
Tamim Darwish
Nageshewar Rao Yepuri
Anne Martel
Thomas Günther Pomorski
Andrea Bertarello
Mark Sansom
Mikaela Rapp
Ramon Crehuet
Tobias Schubeis
Kresten Lindorff-Larsen
Guido Pintacuda
Lise Arleth
Mg2+-dependent conformational equilibria in CorA and an integrated view on transport regulation
eLife
cora mg2+ channel
small-angle neutron scattering
solid-state nuclear magnetic resonance
metadynamics simulation
title Mg2+-dependent conformational equilibria in CorA and an integrated view on transport regulation
title_full Mg2+-dependent conformational equilibria in CorA and an integrated view on transport regulation
title_fullStr Mg2+-dependent conformational equilibria in CorA and an integrated view on transport regulation
title_full_unstemmed Mg2+-dependent conformational equilibria in CorA and an integrated view on transport regulation
title_short Mg2+-dependent conformational equilibria in CorA and an integrated view on transport regulation
title_sort mg2 dependent conformational equilibria in cora and an integrated view on transport regulation
topic cora mg2+ channel
small-angle neutron scattering
solid-state nuclear magnetic resonance
metadynamics simulation
url https://elifesciences.org/articles/71887
work_keys_str_mv AT nicolaitidemandjohansen mg2dependentconformationalequilibriaincoraandanintegratedviewontransportregulation
AT martabonaccorsi mg2dependentconformationalequilibriaincoraandanintegratedviewontransportregulation
AT tonebengtsen mg2dependentconformationalequilibriaincoraandanintegratedviewontransportregulation
AT andreashaahrlarsen mg2dependentconformationalequilibriaincoraandanintegratedviewontransportregulation
AT frederikgrønbæktidemand mg2dependentconformationalequilibriaincoraandanintegratedviewontransportregulation
AT martincramerpedersen mg2dependentconformationalequilibriaincoraandanintegratedviewontransportregulation
AT piehuda mg2dependentconformationalequilibriaincoraandanintegratedviewontransportregulation
AT jensberndtsson mg2dependentconformationalequilibriaincoraandanintegratedviewontransportregulation
AT tamimdarwish mg2dependentconformationalequilibriaincoraandanintegratedviewontransportregulation
AT nageshewarraoyepuri mg2dependentconformationalequilibriaincoraandanintegratedviewontransportregulation
AT annemartel mg2dependentconformationalequilibriaincoraandanintegratedviewontransportregulation
AT thomasguntherpomorski mg2dependentconformationalequilibriaincoraandanintegratedviewontransportregulation
AT andreabertarello mg2dependentconformationalequilibriaincoraandanintegratedviewontransportregulation
AT marksansom mg2dependentconformationalequilibriaincoraandanintegratedviewontransportregulation
AT mikaelarapp mg2dependentconformationalequilibriaincoraandanintegratedviewontransportregulation
AT ramoncrehuet mg2dependentconformationalequilibriaincoraandanintegratedviewontransportregulation
AT tobiasschubeis mg2dependentconformationalequilibriaincoraandanintegratedviewontransportregulation
AT krestenlindorfflarsen mg2dependentconformationalequilibriaincoraandanintegratedviewontransportregulation
AT guidopintacuda mg2dependentconformationalequilibriaincoraandanintegratedviewontransportregulation
AT lisearleth mg2dependentconformationalequilibriaincoraandanintegratedviewontransportregulation