Predicting genes associated with RNA methylation pathways using machine learning

Machine learning of multi-modal data, including transcriptomic, proteomic, structural and physical interaction, predicts genes and molecular pathways involved in RNA methylation in humans.

Bibliographic Details
Main Authors: Georgia Tsagkogeorga, Helena Santos-Rosa, Andrej Alendar, Dan Leggate, Oliver Rausch, Tony Kouzarides, Hendrik Weisser, Namshik Han
Format: Article
Language:English
Published: Nature Portfolio 2022-08-01
Series:Communications Biology
Online Access:https://doi.org/10.1038/s42003-022-03821-y
_version_ 1817999023092531200
author Georgia Tsagkogeorga
Helena Santos-Rosa
Andrej Alendar
Dan Leggate
Oliver Rausch
Tony Kouzarides
Hendrik Weisser
Namshik Han
author_facet Georgia Tsagkogeorga
Helena Santos-Rosa
Andrej Alendar
Dan Leggate
Oliver Rausch
Tony Kouzarides
Hendrik Weisser
Namshik Han
author_sort Georgia Tsagkogeorga
collection DOAJ
description Machine learning of multi-modal data, including transcriptomic, proteomic, structural and physical interaction, predicts genes and molecular pathways involved in RNA methylation in humans.
first_indexed 2024-04-14T03:02:20Z
format Article
id doaj.art-396efec7513649209949c08bf1dc3e5d
institution Directory Open Access Journal
issn 2399-3642
language English
last_indexed 2024-04-14T03:02:20Z
publishDate 2022-08-01
publisher Nature Portfolio
record_format Article
series Communications Biology
spelling doaj.art-396efec7513649209949c08bf1dc3e5d2022-12-22T02:15:51ZengNature PortfolioCommunications Biology2399-36422022-08-015111010.1038/s42003-022-03821-yPredicting genes associated with RNA methylation pathways using machine learningGeorgia Tsagkogeorga0Helena Santos-Rosa1Andrej Alendar2Dan Leggate3Oliver Rausch4Tony Kouzarides5Hendrik Weisser6Namshik Han7STORM Therapeutics Ltd, Babraham Research CampusThe Gurdon Institute, University of CambridgeThe Gurdon Institute, University of CambridgeSTORM Therapeutics Ltd, Babraham Research CampusSTORM Therapeutics Ltd, Babraham Research CampusMilner Therapeutics Institute, University of CambridgeSTORM Therapeutics Ltd, Babraham Research CampusMilner Therapeutics Institute, University of CambridgeMachine learning of multi-modal data, including transcriptomic, proteomic, structural and physical interaction, predicts genes and molecular pathways involved in RNA methylation in humans.https://doi.org/10.1038/s42003-022-03821-y
spellingShingle Georgia Tsagkogeorga
Helena Santos-Rosa
Andrej Alendar
Dan Leggate
Oliver Rausch
Tony Kouzarides
Hendrik Weisser
Namshik Han
Predicting genes associated with RNA methylation pathways using machine learning
Communications Biology
title Predicting genes associated with RNA methylation pathways using machine learning
title_full Predicting genes associated with RNA methylation pathways using machine learning
title_fullStr Predicting genes associated with RNA methylation pathways using machine learning
title_full_unstemmed Predicting genes associated with RNA methylation pathways using machine learning
title_short Predicting genes associated with RNA methylation pathways using machine learning
title_sort predicting genes associated with rna methylation pathways using machine learning
url https://doi.org/10.1038/s42003-022-03821-y
work_keys_str_mv AT georgiatsagkogeorga predictinggenesassociatedwithrnamethylationpathwaysusingmachinelearning
AT helenasantosrosa predictinggenesassociatedwithrnamethylationpathwaysusingmachinelearning
AT andrejalendar predictinggenesassociatedwithrnamethylationpathwaysusingmachinelearning
AT danleggate predictinggenesassociatedwithrnamethylationpathwaysusingmachinelearning
AT oliverrausch predictinggenesassociatedwithrnamethylationpathwaysusingmachinelearning
AT tonykouzarides predictinggenesassociatedwithrnamethylationpathwaysusingmachinelearning
AT hendrikweisser predictinggenesassociatedwithrnamethylationpathwaysusingmachinelearning
AT namshikhan predictinggenesassociatedwithrnamethylationpathwaysusingmachinelearning