Mawrth Vallis, Mars, classified using the NOAH-H deep-learning terrain classification system

ABSTRACTA deep learning (DL) terrain classification system, the Novelty and Anomaly Hunter – HiRISE (NOAH-H) was used to produce a terrain map of Mawrth Vallis, Mars. With it, we digitised the extent and distribution of transverse aeolian ridges (TARs), a common type of martian aeolian bedform. We p...

Full description

Bibliographic Details
Main Authors: Alexander M. Barrett, Peter Fawdon, Elena A. Favaro, Matthew R. Balme, Jack Wright, Mark J. Woods, Spyros Karachalios, Eleni Bohacek, Levin Gerdes, Elliot Sefton-Nash, Luc Joudrier
Format: Article
Language:English
Published: Taylor & Francis Group 2023-12-01
Series:Journal of Maps
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/17445647.2023.2285480
_version_ 1827320816689217536
author Alexander M. Barrett
Peter Fawdon
Elena A. Favaro
Matthew R. Balme
Jack Wright
Mark J. Woods
Spyros Karachalios
Eleni Bohacek
Levin Gerdes
Elliot Sefton-Nash
Luc Joudrier
author_facet Alexander M. Barrett
Peter Fawdon
Elena A. Favaro
Matthew R. Balme
Jack Wright
Mark J. Woods
Spyros Karachalios
Eleni Bohacek
Levin Gerdes
Elliot Sefton-Nash
Luc Joudrier
author_sort Alexander M. Barrett
collection DOAJ
description ABSTRACTA deep learning (DL) terrain classification system, the Novelty and Anomaly Hunter – HiRISE (NOAH-H) was used to produce a terrain map of Mawrth Vallis, Mars. With it, we digitised the extent and distribution of transverse aeolian ridges (TARs), a common type of martian aeolian bedform. We present maps of the site, classifying terrain into descriptive classes and interpretive groups. TAR density maps are calculated, and the network output is compared to a manually produced map of TAR density, highlighting the differences in approach and results between these methods. Even when mapping on a small scale, humans must divide the terrain into coherent patches in order to map a large area in a reasonable time frame. Conversely, the speed of DL systems enables mapping on the pixel scale, producing a more detailed product, but one which is also “noisier”, and less immediately informative. There are pros and cons to both approaches.
first_indexed 2024-03-09T14:22:30Z
format Article
id doaj.art-3988af3368c04a44860e21ebcfff5a31
institution Directory Open Access Journal
issn 1744-5647
language English
last_indexed 2024-04-25T00:53:40Z
publishDate 2023-12-01
publisher Taylor & Francis Group
record_format Article
series Journal of Maps
spelling doaj.art-3988af3368c04a44860e21ebcfff5a312024-03-11T14:20:25ZengTaylor & Francis GroupJournal of Maps1744-56472023-12-0119110.1080/17445647.2023.2285480Mawrth Vallis, Mars, classified using the NOAH-H deep-learning terrain classification systemAlexander M. Barrett0Peter Fawdon1Elena A. Favaro2Matthew R. Balme3Jack Wright4Mark J. Woods5Spyros Karachalios6Eleni Bohacek7Levin Gerdes8Elliot Sefton-Nash9Luc Joudrier10School of Physical Sciences, The Open University, Milton Keynes, UKSchool of Physical Sciences, The Open University, Milton Keynes, UKSchool of Physical Sciences, The Open University, Milton Keynes, UKSchool of Physical Sciences, The Open University, Milton Keynes, UKSchool of Physical Sciences, The Open University, Milton Keynes, UKSCISYS Ltd, Methuen Park, Chippenham, UKSCISYS Ltd, Methuen Park, Chippenham, UKEuropean Space Agency (ESA), European Space Research and Technology Centre (ESTEC), Noordwijk, NetherlandsEuropean Space Agency (ESA), European Space Research and Technology Centre (ESTEC), Noordwijk, NetherlandsEuropean Space Agency (ESA), European Space Research and Technology Centre (ESTEC), Noordwijk, NetherlandsEuropean Space Agency (ESA), European Space Research and Technology Centre (ESTEC), Noordwijk, NetherlandsABSTRACTA deep learning (DL) terrain classification system, the Novelty and Anomaly Hunter – HiRISE (NOAH-H) was used to produce a terrain map of Mawrth Vallis, Mars. With it, we digitised the extent and distribution of transverse aeolian ridges (TARs), a common type of martian aeolian bedform. We present maps of the site, classifying terrain into descriptive classes and interpretive groups. TAR density maps are calculated, and the network output is compared to a manually produced map of TAR density, highlighting the differences in approach and results between these methods. Even when mapping on a small scale, humans must divide the terrain into coherent patches in order to map a large area in a reasonable time frame. Conversely, the speed of DL systems enables mapping on the pixel scale, producing a more detailed product, but one which is also “noisier”, and less immediately informative. There are pros and cons to both approaches.https://www.tandfonline.com/doi/10.1080/17445647.2023.2285480Marsmachine learningMawrth VallisExoMars
spellingShingle Alexander M. Barrett
Peter Fawdon
Elena A. Favaro
Matthew R. Balme
Jack Wright
Mark J. Woods
Spyros Karachalios
Eleni Bohacek
Levin Gerdes
Elliot Sefton-Nash
Luc Joudrier
Mawrth Vallis, Mars, classified using the NOAH-H deep-learning terrain classification system
Journal of Maps
Mars
machine learning
Mawrth Vallis
ExoMars
title Mawrth Vallis, Mars, classified using the NOAH-H deep-learning terrain classification system
title_full Mawrth Vallis, Mars, classified using the NOAH-H deep-learning terrain classification system
title_fullStr Mawrth Vallis, Mars, classified using the NOAH-H deep-learning terrain classification system
title_full_unstemmed Mawrth Vallis, Mars, classified using the NOAH-H deep-learning terrain classification system
title_short Mawrth Vallis, Mars, classified using the NOAH-H deep-learning terrain classification system
title_sort mawrth vallis mars classified using the noah h deep learning terrain classification system
topic Mars
machine learning
Mawrth Vallis
ExoMars
url https://www.tandfonline.com/doi/10.1080/17445647.2023.2285480
work_keys_str_mv AT alexandermbarrett mawrthvallismarsclassifiedusingthenoahhdeeplearningterrainclassificationsystem
AT peterfawdon mawrthvallismarsclassifiedusingthenoahhdeeplearningterrainclassificationsystem
AT elenaafavaro mawrthvallismarsclassifiedusingthenoahhdeeplearningterrainclassificationsystem
AT matthewrbalme mawrthvallismarsclassifiedusingthenoahhdeeplearningterrainclassificationsystem
AT jackwright mawrthvallismarsclassifiedusingthenoahhdeeplearningterrainclassificationsystem
AT markjwoods mawrthvallismarsclassifiedusingthenoahhdeeplearningterrainclassificationsystem
AT spyroskarachalios mawrthvallismarsclassifiedusingthenoahhdeeplearningterrainclassificationsystem
AT elenibohacek mawrthvallismarsclassifiedusingthenoahhdeeplearningterrainclassificationsystem
AT levingerdes mawrthvallismarsclassifiedusingthenoahhdeeplearningterrainclassificationsystem
AT elliotseftonnash mawrthvallismarsclassifiedusingthenoahhdeeplearningterrainclassificationsystem
AT lucjoudrier mawrthvallismarsclassifiedusingthenoahhdeeplearningterrainclassificationsystem