Oxygen-linked S-nitrosation in fish myoglobins: a cysteine-specific tertiary allosteric effect.
The discovery that cysteine (Cys) S-nitrosation of trout myoglobin (Mb) increases heme O2 affinity has revealed a novel allosteric effect that may promote hypoxia-induced nitric oxide (NO) delivery in the trout heart and improve myocardial efficiency. To better understand this allosteric effect, we...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2014-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4039430?pdf=render |
_version_ | 1811221145983123456 |
---|---|
author | Signe Helbo Andrew J Gow Amna Jamil Barry D Howes Giulietta Smulevich Angela Fago |
author_facet | Signe Helbo Andrew J Gow Amna Jamil Barry D Howes Giulietta Smulevich Angela Fago |
author_sort | Signe Helbo |
collection | DOAJ |
description | The discovery that cysteine (Cys) S-nitrosation of trout myoglobin (Mb) increases heme O2 affinity has revealed a novel allosteric effect that may promote hypoxia-induced nitric oxide (NO) delivery in the trout heart and improve myocardial efficiency. To better understand this allosteric effect, we investigated the functional effects and structural origin of S-nitrosation in selected fish Mbs differing by content and position of reactive cysteine (Cys) residues. The Mbs from the Atlantic salmon and the yellowfin tuna, containing two and one reactive Cys, respectively, were S-nitrosated in vitro by reaction with Cys-NO to generate Mb-SNO to a similar yield (∼0.50 SH/heme), suggesting reaction at a specific Cys residue. As found for trout, salmon Mb showed a low O2 affinity (P50 = 2.7 torr) that was increased by S-nitrosation (P50 = 1.7 torr), whereas in tuna Mb, O2 affinity (P50 = 0.9 torr) was independent of S-nitrosation. O2 dissociation rates (koff) of trout and salmon Mbs were not altered when Cys were in the SNO or N-ethylmaleimide (NEM) forms, suggesting that S-nitrosation should affect O2 affinity by raising the O2 association rate (kon). Taken together, these results indicate that O2-linked S-nitrosation may occur specifically at Cys107, present in salmon and trout Mb but not in tuna Mb, and that it may relieve protein constraints that limit O2 entry to the heme pocket of the unmodified Mb by a yet unknown mechanism. UV-Vis and resonance Raman spectra of the NEM-derivative of trout Mb (functionally equivalent to Mb-SNO and not photolabile) were identical to those of the unmodified Mb, indicating that S-nitrosation does not affect the extent or nature of heme-ligand stabilization of the fully ligated protein. The importance of S-nitrosation of Mb in vivo is confirmed by the observation that Mb-SNO is present in trout hearts and that its level can be significantly reduced by anoxic conditions. |
first_indexed | 2024-04-12T07:54:18Z |
format | Article |
id | doaj.art-398f284baa7441f7abe28ab53dfd91fc |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-04-12T07:54:18Z |
publishDate | 2014-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-398f284baa7441f7abe28ab53dfd91fc2022-12-22T03:41:32ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-0195e9701210.1371/journal.pone.0097012Oxygen-linked S-nitrosation in fish myoglobins: a cysteine-specific tertiary allosteric effect.Signe HelboAndrew J GowAmna JamilBarry D HowesGiulietta SmulevichAngela FagoThe discovery that cysteine (Cys) S-nitrosation of trout myoglobin (Mb) increases heme O2 affinity has revealed a novel allosteric effect that may promote hypoxia-induced nitric oxide (NO) delivery in the trout heart and improve myocardial efficiency. To better understand this allosteric effect, we investigated the functional effects and structural origin of S-nitrosation in selected fish Mbs differing by content and position of reactive cysteine (Cys) residues. The Mbs from the Atlantic salmon and the yellowfin tuna, containing two and one reactive Cys, respectively, were S-nitrosated in vitro by reaction with Cys-NO to generate Mb-SNO to a similar yield (∼0.50 SH/heme), suggesting reaction at a specific Cys residue. As found for trout, salmon Mb showed a low O2 affinity (P50 = 2.7 torr) that was increased by S-nitrosation (P50 = 1.7 torr), whereas in tuna Mb, O2 affinity (P50 = 0.9 torr) was independent of S-nitrosation. O2 dissociation rates (koff) of trout and salmon Mbs were not altered when Cys were in the SNO or N-ethylmaleimide (NEM) forms, suggesting that S-nitrosation should affect O2 affinity by raising the O2 association rate (kon). Taken together, these results indicate that O2-linked S-nitrosation may occur specifically at Cys107, present in salmon and trout Mb but not in tuna Mb, and that it may relieve protein constraints that limit O2 entry to the heme pocket of the unmodified Mb by a yet unknown mechanism. UV-Vis and resonance Raman spectra of the NEM-derivative of trout Mb (functionally equivalent to Mb-SNO and not photolabile) were identical to those of the unmodified Mb, indicating that S-nitrosation does not affect the extent or nature of heme-ligand stabilization of the fully ligated protein. The importance of S-nitrosation of Mb in vivo is confirmed by the observation that Mb-SNO is present in trout hearts and that its level can be significantly reduced by anoxic conditions.http://europepmc.org/articles/PMC4039430?pdf=render |
spellingShingle | Signe Helbo Andrew J Gow Amna Jamil Barry D Howes Giulietta Smulevich Angela Fago Oxygen-linked S-nitrosation in fish myoglobins: a cysteine-specific tertiary allosteric effect. PLoS ONE |
title | Oxygen-linked S-nitrosation in fish myoglobins: a cysteine-specific tertiary allosteric effect. |
title_full | Oxygen-linked S-nitrosation in fish myoglobins: a cysteine-specific tertiary allosteric effect. |
title_fullStr | Oxygen-linked S-nitrosation in fish myoglobins: a cysteine-specific tertiary allosteric effect. |
title_full_unstemmed | Oxygen-linked S-nitrosation in fish myoglobins: a cysteine-specific tertiary allosteric effect. |
title_short | Oxygen-linked S-nitrosation in fish myoglobins: a cysteine-specific tertiary allosteric effect. |
title_sort | oxygen linked s nitrosation in fish myoglobins a cysteine specific tertiary allosteric effect |
url | http://europepmc.org/articles/PMC4039430?pdf=render |
work_keys_str_mv | AT signehelbo oxygenlinkedsnitrosationinfishmyoglobinsacysteinespecifictertiaryallostericeffect AT andrewjgow oxygenlinkedsnitrosationinfishmyoglobinsacysteinespecifictertiaryallostericeffect AT amnajamil oxygenlinkedsnitrosationinfishmyoglobinsacysteinespecifictertiaryallostericeffect AT barrydhowes oxygenlinkedsnitrosationinfishmyoglobinsacysteinespecifictertiaryallostericeffect AT giuliettasmulevich oxygenlinkedsnitrosationinfishmyoglobinsacysteinespecifictertiaryallostericeffect AT angelafago oxygenlinkedsnitrosationinfishmyoglobinsacysteinespecifictertiaryallostericeffect |