The Analysis of Hyers–Ulam Stability for Heat Equations with Time-Dependent Coefficient

In this paper, we prove the Hyers–Ulam stability and generalized Hyers–Ulam stability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mi>t</mi></msub>...

Full description

Bibliographic Details
Main Authors: Fang Wang, Ying Gao
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/22/4355
Description
Summary:In this paper, we prove the Hyers–Ulam stability and generalized Hyers–Ulam stability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mi>t</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>a</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>Δ</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> with an initial condition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>∈</mo><msup><mi>R</mi><mi>n</mi></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>t</mi><mo><</mo><mi>T</mi></mrow></semantics></math></inline-formula>; the corresponding conclusions of the standard heat equation can be also derived as corollaries. All of the above results are proved by using the properties of the fundamental solution of the equation.
ISSN:2227-7390