The Analysis of Hyers–Ulam Stability for Heat Equations with Time-Dependent Coefficient

In this paper, we prove the Hyers–Ulam stability and generalized Hyers–Ulam stability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mi>t</mi></msub>...

Full description

Bibliographic Details
Main Authors: Fang Wang, Ying Gao
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/22/4355
_version_ 1797464612253204480
author Fang Wang
Ying Gao
author_facet Fang Wang
Ying Gao
author_sort Fang Wang
collection DOAJ
description In this paper, we prove the Hyers–Ulam stability and generalized Hyers–Ulam stability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mi>t</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>a</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>Δ</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> with an initial condition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>∈</mo><msup><mi>R</mi><mi>n</mi></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>t</mi><mo><</mo><mi>T</mi></mrow></semantics></math></inline-formula>; the corresponding conclusions of the standard heat equation can be also derived as corollaries. All of the above results are proved by using the properties of the fundamental solution of the equation.
first_indexed 2024-03-09T18:10:40Z
format Article
id doaj.art-39c109b6cccf49e39397b0829df16d08
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T18:10:40Z
publishDate 2022-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-39c109b6cccf49e39397b0829df16d082023-11-24T09:10:14ZengMDPI AGMathematics2227-73902022-11-011022435510.3390/math10224355The Analysis of Hyers–Ulam Stability for Heat Equations with Time-Dependent CoefficientFang Wang0Ying Gao1School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha 410114, ChinaSchool of Mathematics and Statistics, Changsha University of Science and Technology, Changsha 410114, ChinaIn this paper, we prove the Hyers–Ulam stability and generalized Hyers–Ulam stability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mi>t</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>a</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>Δ</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> with an initial condition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>∈</mo><msup><mi>R</mi><mi>n</mi></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>t</mi><mo><</mo><mi>T</mi></mrow></semantics></math></inline-formula>; the corresponding conclusions of the standard heat equation can be also derived as corollaries. All of the above results are proved by using the properties of the fundamental solution of the equation.https://www.mdpi.com/2227-7390/10/22/4355generalized Hyers–Ulam stabilityHyers–Ulam stabilityheat equations with time-dependent coefficientfundamental solutions
spellingShingle Fang Wang
Ying Gao
The Analysis of Hyers–Ulam Stability for Heat Equations with Time-Dependent Coefficient
Mathematics
generalized Hyers–Ulam stability
Hyers–Ulam stability
heat equations with time-dependent coefficient
fundamental solutions
title The Analysis of Hyers–Ulam Stability for Heat Equations with Time-Dependent Coefficient
title_full The Analysis of Hyers–Ulam Stability for Heat Equations with Time-Dependent Coefficient
title_fullStr The Analysis of Hyers–Ulam Stability for Heat Equations with Time-Dependent Coefficient
title_full_unstemmed The Analysis of Hyers–Ulam Stability for Heat Equations with Time-Dependent Coefficient
title_short The Analysis of Hyers–Ulam Stability for Heat Equations with Time-Dependent Coefficient
title_sort analysis of hyers ulam stability for heat equations with time dependent coefficient
topic generalized Hyers–Ulam stability
Hyers–Ulam stability
heat equations with time-dependent coefficient
fundamental solutions
url https://www.mdpi.com/2227-7390/10/22/4355
work_keys_str_mv AT fangwang theanalysisofhyersulamstabilityforheatequationswithtimedependentcoefficient
AT yinggao theanalysisofhyersulamstabilityforheatequationswithtimedependentcoefficient
AT fangwang analysisofhyersulamstabilityforheatequationswithtimedependentcoefficient
AT yinggao analysisofhyersulamstabilityforheatequationswithtimedependentcoefficient