Mechanisms of Innate Immune Sensing of HTLV-1 and Viral Immune Evasion
Human T lymphotropic virus-1 (HTLV-1) was the first identified oncoretrovirus, which infects and establishes a persistent infection in approximately 10–20 million people worldwide. Although only ~5% of infected individuals develop pathologies such as adult T-cell leukemia/lymphoma (ATLL) or a neuroi...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-05-01
|
Series: | Pathogens |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-0817/12/5/735 |
_version_ | 1797598758021627904 |
---|---|
author | Suchitra Mohanty Edward W. Harhaj |
author_facet | Suchitra Mohanty Edward W. Harhaj |
author_sort | Suchitra Mohanty |
collection | DOAJ |
description | Human T lymphotropic virus-1 (HTLV-1) was the first identified oncoretrovirus, which infects and establishes a persistent infection in approximately 10–20 million people worldwide. Although only ~5% of infected individuals develop pathologies such as adult T-cell leukemia/lymphoma (ATLL) or a neuroinflammatory disorder termed HTLV-1-asssociated myelopathy/tropical spastic paraparesis (HAM/TSP), asymptomatic carriers are more susceptible to opportunistic infections. Furthermore, ATLL patients are severely immunosuppressed and prone to other malignancies and other infections. The HTLV-1 replication cycle provides ligands, mainly nucleic acids (RNA, RNA/DNA intermediates, ssDNA intermediates, and dsDNA), that are sensed by different pattern recognition receptors (PRRs) to trigger immune responses. However, the mechanisms of innate immune detection and immune responses to HTLV-1 infection are not well understood. In this review, we highlight the functional roles of different immune sensors in recognizing HTLV-1 infection in multiple cell types and the antiviral roles of host restriction factors in limiting persistent infection of HTLV-1. We also provide a comprehensive overview of intricate strategies employed by HTLV-1 to subvert the host innate immune response that may contribute to the development of HTLV-1-associated diseases. A more detailed understanding of HTLV-1-host pathogen interactions may inform novel strategies for HTLV-1 antivirals, vaccines, and treatments for ATLL or HAM/TSP. |
first_indexed | 2024-03-11T03:25:16Z |
format | Article |
id | doaj.art-39cd4ae4b0084c2a9d81ed0563228a89 |
institution | Directory Open Access Journal |
issn | 2076-0817 |
language | English |
last_indexed | 2024-03-11T03:25:16Z |
publishDate | 2023-05-01 |
publisher | MDPI AG |
record_format | Article |
series | Pathogens |
spelling | doaj.art-39cd4ae4b0084c2a9d81ed0563228a892023-11-18T02:47:37ZengMDPI AGPathogens2076-08172023-05-0112573510.3390/pathogens12050735Mechanisms of Innate Immune Sensing of HTLV-1 and Viral Immune EvasionSuchitra Mohanty0Edward W. Harhaj1Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USADepartment of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USAHuman T lymphotropic virus-1 (HTLV-1) was the first identified oncoretrovirus, which infects and establishes a persistent infection in approximately 10–20 million people worldwide. Although only ~5% of infected individuals develop pathologies such as adult T-cell leukemia/lymphoma (ATLL) or a neuroinflammatory disorder termed HTLV-1-asssociated myelopathy/tropical spastic paraparesis (HAM/TSP), asymptomatic carriers are more susceptible to opportunistic infections. Furthermore, ATLL patients are severely immunosuppressed and prone to other malignancies and other infections. The HTLV-1 replication cycle provides ligands, mainly nucleic acids (RNA, RNA/DNA intermediates, ssDNA intermediates, and dsDNA), that are sensed by different pattern recognition receptors (PRRs) to trigger immune responses. However, the mechanisms of innate immune detection and immune responses to HTLV-1 infection are not well understood. In this review, we highlight the functional roles of different immune sensors in recognizing HTLV-1 infection in multiple cell types and the antiviral roles of host restriction factors in limiting persistent infection of HTLV-1. We also provide a comprehensive overview of intricate strategies employed by HTLV-1 to subvert the host innate immune response that may contribute to the development of HTLV-1-associated diseases. A more detailed understanding of HTLV-1-host pathogen interactions may inform novel strategies for HTLV-1 antivirals, vaccines, and treatments for ATLL or HAM/TSP.https://www.mdpi.com/2076-0817/12/5/735HTLV-1ATLLimmune sensorsrestriction factorsimmune evasionTax |
spellingShingle | Suchitra Mohanty Edward W. Harhaj Mechanisms of Innate Immune Sensing of HTLV-1 and Viral Immune Evasion Pathogens HTLV-1 ATLL immune sensors restriction factors immune evasion Tax |
title | Mechanisms of Innate Immune Sensing of HTLV-1 and Viral Immune Evasion |
title_full | Mechanisms of Innate Immune Sensing of HTLV-1 and Viral Immune Evasion |
title_fullStr | Mechanisms of Innate Immune Sensing of HTLV-1 and Viral Immune Evasion |
title_full_unstemmed | Mechanisms of Innate Immune Sensing of HTLV-1 and Viral Immune Evasion |
title_short | Mechanisms of Innate Immune Sensing of HTLV-1 and Viral Immune Evasion |
title_sort | mechanisms of innate immune sensing of htlv 1 and viral immune evasion |
topic | HTLV-1 ATLL immune sensors restriction factors immune evasion Tax |
url | https://www.mdpi.com/2076-0817/12/5/735 |
work_keys_str_mv | AT suchitramohanty mechanismsofinnateimmunesensingofhtlv1andviralimmuneevasion AT edwardwharhaj mechanismsofinnateimmunesensingofhtlv1andviralimmuneevasion |