A Hand Gesture Recognition Circuit Utilizing an Analog Voting Classifier

Electromyography is a diagnostic medical procedure used to assess the state of a muscle and its related nerves. Electromyography signals are monitored to detect neuromuscular abnormalities and diseases but can also prove useful in decoding movement-related signals. This information is vital to contr...

Full description

Bibliographic Details
Main Authors: Vassilis Alimisis, Vassilis Mouzakis, Georgios Gennis, Errikos Tsouvalas, Christos Dimas, Paul P. Sotiriadis
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/11/23/3915
Description
Summary:Electromyography is a diagnostic medical procedure used to assess the state of a muscle and its related nerves. Electromyography signals are monitored to detect neuromuscular abnormalities and diseases but can also prove useful in decoding movement-related signals. This information is vital to controlling prosthetics in a more natural way. To this end, a novel analog integrated voting classifier is proposed as a hand gesture recognition system. The voting classifiers utilize 3 separate centroid-based classifiers, each one attached to a different electromyographic electrode and a voting circuit. The main building blocks of the architecture are bump and winner-take-all circuits. To confirm the proper operation of the proposed classifier, its post-layout classification results (91.2% accuracy) are compared to a software-based implementation (93.8% accuracy) of the same voting classifier. A TSMC 90 nm CMOS process in the Cadence IC Suite was used to design and simulate the following circuits and architectures.
ISSN:2079-9292