Global Optimization in Robust Fractional Control of Uncertain Fractional Order Systems: A Thermal Application Using the STM32 Microcontroller

In this paper, we suggest an improvement to our previously undertaken approach. Briefly, this approach consisted of applying the robust fractional predictive control (RFPC) for a class of constrained fractional systems implementing the min–max optimization technique. The RFPC controller requires res...

Full description

Bibliographic Details
Main Authors: Aymen Rhouma, Sami Hafsi, Faouzi Bouani
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/11/2/268
Description
Summary:In this paper, we suggest an improvement to our previously undertaken approach. Briefly, this approach consisted of applying the robust fractional predictive control (RFPC) for a class of constrained fractional systems implementing the min–max optimization technique. The RFPC controller requires resolution of a non-convex min–max optimization problem. The resolution of this problem, however, can only conduce to local solutions. The reason is simple: the objective function to be optimized is non-convex due to the presence of uncertainties. In the present work, we propose a global optimization-based RFPC controller for an uncertain fractional order system. A determinist global optimization method, namely, generalized geometric programming (GGP), is proposed to solve this problem for the uncertain fractional order system. The GGP method consists of converting a non-convex problem into a convex one via the application of variable changes. The technique of the convexification of this method is applied in line with the objective function to be optimized. Consequently, we obtained a new convex criterion and a convex problem. From an experimental point of view, we applied the proposed RFPC to a real thermal system using an STM32 microcontroller in order to control our thermal system.
ISSN:2079-9292