Back to the formula - LHC edition
While neural networks offer an attractive way to numerically encode functions, actual formulas remain the language of theoretical particle physics. We use symbolic regression trained on matrix-element information to extract, for instance, optimal LHC observables. This way we invert the usual simulat...
Main Author: | Anja Butter, Tilman Plehn, Nathalie Soybelman, Johann Brehmer |
---|---|
Format: | Article |
Language: | English |
Published: |
SciPost
2024-01-01
|
Series: | SciPost Physics |
Online Access: | https://scipost.org/SciPostPhys.16.1.037 |
Similar Items
-
How to GAN LHC events
by: Anja Butter, Tilman Plehn, Ramon Winterhalder
Published: (2019-12-01) -
Jet diffusion versus JetGPT – Modern networks for the LHC
by: Anja Butter, Nathan Huetsch, Sofia Palacios Schweitzer, Tilman Plehn, Peter Sorrenson, Jonas Spinner
Published: (2025-03-01) -
How to GAN event subtraction
by: Anja Butter, Tilman Plehn, Ramon Winterhalder
Published: (2020-11-01) -
Invertible networks or partons to detector and back again
by: Marco Bellagente, Anja Butter, Gregor Kasieczka, Tilman Plehn, Armand Rousselot, Ramon Winterhalder, Lynton Ardizzone, Ullrich Köthe
Published: (2020-11-01) -
A normalized autoencoder for LHC triggers
by: Barry M. Dillon, Luigi Favaro, Tilman Plehn, Peter Sorrenson, Michael Krämer
Published: (2023-11-01)