Effects of UV-B radiation on epiphytic bacterial communities on male and female Sargassum thunbergii

Abstract The effects of increased UV-B radiation on macroalgae have been widely studied, but knowledge concerning the response of communities of algal epiphytic bacteria to increased UV-B radiation and differences between male and female algae is still lacking. Via 16S rDNA high-throughput sequencin...

Full description

Bibliographic Details
Main Authors: Jing Wang, Zhibo Yang, Peiyao Lu, Yan Sun, Song Xue, Xuexi Tang, Hui Xiao
Format: Article
Language:English
Published: Nature Portfolio 2023-03-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-022-26494-3
Description
Summary:Abstract The effects of increased UV-B radiation on macroalgae have been widely studied, but knowledge concerning the response of communities of algal epiphytic bacteria to increased UV-B radiation and differences between male and female algae is still lacking. Via 16S rDNA high-throughput sequencing technology, changes in the epiphytic bacterial communities on male and female S. thunbergii under increased UV-B radiation were studied in the lab. Under different UV-B radiation intensities, although the α diversity and community composition of epiphytic bacteria changed little, the β diversity indicated that the community structure of bacteria on S. thunbergii was obviously clustered, and the relative abundance of dominant bacteria and indicator species changed considerably. There were unique bacteria in each experimental group, and the bacteria whose abundance obviously changed were members of groups related to environmental resistance or adaptability. The variation in the abundance of epiphytic bacteria was different in male and female S. thunbergii, and the bacteria whose abundance greatly changed were mainly related to algal growth and metabolism. The abundance of genes with predicted functions related to metabolism, genetic information processing, environmental adaptation and infectious diseases changed with increased UV-B radiation, and those variations differed between epiphytic bacteria on male and female S. thunbergii. This study found that the algal epiphytic bacteria were influenced by the increase in UV-B radiation and underwent certain adaptations through adjustments to community structure and function, and this response was also affected by the sex of the macroalgae. These results are expected to serve as experimental basis and provide reference for further understanding of the response of algae epiphytic bacteria to enhanced UV-B radiation caused by the thinning of the ozone layer and the resulting changes in the relationship between algae and bacteria, which may change the community of the marine ecosystem and affect important marine ecological process.
ISSN:2045-2322