Summary: | Abstract We investigate the role of small‐scale, high‐frequency motions on lateral transport in the ocean, by using velocity fields and particle trajectories from an ocean general circulation model (MITgcm‐llc4320) that permits submesoscale flows, inertia‐gravity waves, and tides. Temporal averaging/filtering removes most of the submesoscale turbulence, inertia‐gravity waves, and tides, resulting in a largely geostrophic flow, with a rapid drop‐off in energy at scales smaller than the mesoscales. We advect two types of Lagrangian particles: (a) 2‐D particles (surface restricted) and (b) 3‐D particles (advected in full three dimensions) with the filtered and unfiltered velocities and calculate Lagrangian diagnostics. At large length/time scales, Lagrangian diffusivity is comparable for filtered and unfiltered velocities, while at short scales, unfiltered velocities disperse particles much faster. We also calculate diagnostics of Lagrangian coherent structures:rotationally coherent Lagrangian vortices detected from closed contours of the Lagrangian‐averaged vorticity deviation and material transport barriers formed by ridges of maximum finite‐time Lyapunov exponent. For temporally filtered velocities, we observe strong material coherence, which breaks down when the level of temporal filtering is reduced/removed, due to vigorous small‐scale mixing. In addition, for the lowest temporal resolution, the 3‐D particles experience very little vertical motion, suggesting that degrading temporal resolution greatly reduces vertical advection by high‐frequency motions. Our study suggests that Lagrangian diagnostics based on satellite‐derived surface geostrophic velocity fields, even with higher spatial resolutions as in the upcoming Surface Water and Ocean Topography mission, may overestimate the presence of mesoscale coherent structures and underestimate dispersion.
|