A Double-Penalized Estimator to Combat Separation and Multicollinearity in Logistic Regression
When developing prediction models for small or sparse binary data with many highly correlated covariates, logistic regression often encounters separation or multicollinearity problems, resulting serious bias and even the nonexistence of standard maximum likelihood estimates. The combination of separ...
Principais autores: | Ying Guan, Guang-Hui Fu |
---|---|
Formato: | Artigo |
Idioma: | English |
Publicado em: |
MDPI AG
2022-10-01
|
coleção: | Mathematics |
Assuntos: | |
Acesso em linha: | https://www.mdpi.com/2227-7390/10/20/3824 |
Registros relacionados
-
Robust Estimators of Logistic Regression with Problems Multicollinearity or Outliers Values.
por: Fadhil Abbul Abbas AL- Aabdi, et al.
Publicado em: (2014-12-01) -
A generalized Liu-type estimator for logistic partial linear regression model with multicollinearity
por: Dayang Dai, et al.
Publicado em: (2023-03-01) -
Impact of the power of adaptive weight on penalized logistic regression: Application to cancer classification
por: Narumol Sudjai, et al.
Publicado em: (2024-12-01) -
Application of Binary Logistic Regression in Biological Studies
por: Debashmita Banerjee, et al.
Publicado em: (2024-04-01) -
Multicollinearity in Logistic Regression Model -Subject Review-
por: Najlaa Saad Ibrahim, et al.
Publicado em: (2020-06-01)