Design and development of the ITER CTS diagnostic

The Collective Thomson Scattering (CTS) diagnostic will be a primary diagnostic for measuring the dynamics of the confined fusion born alpha particles in ITER and will be the only diagnostic for alphas below 1.7 MeV [1]. The probe beam of the CTS diagnostic comes from a 60 GHz 1 MW gyrotron operated...

Full description

Bibliographic Details
Main Authors: Korsholm Søren B., Gonçalves Bruno, Gutierrez Heidi E., Henriques Elsa, Infante Virginia, Jensen Thomas, Jessen Martin, Klinkby Esben B., Larsen Axel W., Leipold Frank, Lopes André, Luis Raul, Naulin Volker, Nielsen Stefan K., Nonbøl Erik, Rasmussen Jesper, Salewski Mirko, Stejner Morten, Taormina Arianna, Vale Alberto, Vidal Catarina, Sanchez Laura, Ballester Raul M., Udintsev Victor
Format: Article
Language:English
Published: EDP Sciences 2019-01-01
Series:EPJ Web of Conferences
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2019/08/epjconf_ec2018_03002.pdf
_version_ 1818725820652322816
author Korsholm Søren B.
Gonçalves Bruno
Gutierrez Heidi E.
Henriques Elsa
Infante Virginia
Jensen Thomas
Jessen Martin
Klinkby Esben B.
Larsen Axel W.
Leipold Frank
Lopes André
Luis Raul
Naulin Volker
Nielsen Stefan K.
Nonbøl Erik
Rasmussen Jesper
Salewski Mirko
Stejner Morten
Taormina Arianna
Vale Alberto
Vidal Catarina
Sanchez Laura
Ballester Raul M.
Udintsev Victor
author_facet Korsholm Søren B.
Gonçalves Bruno
Gutierrez Heidi E.
Henriques Elsa
Infante Virginia
Jensen Thomas
Jessen Martin
Klinkby Esben B.
Larsen Axel W.
Leipold Frank
Lopes André
Luis Raul
Naulin Volker
Nielsen Stefan K.
Nonbøl Erik
Rasmussen Jesper
Salewski Mirko
Stejner Morten
Taormina Arianna
Vale Alberto
Vidal Catarina
Sanchez Laura
Ballester Raul M.
Udintsev Victor
author_sort Korsholm Søren B.
collection DOAJ
description The Collective Thomson Scattering (CTS) diagnostic will be a primary diagnostic for measuring the dynamics of the confined fusion born alpha particles in ITER and will be the only diagnostic for alphas below 1.7 MeV [1]. The probe beam of the CTS diagnostic comes from a 60 GHz 1 MW gyrotron operated in a ~100 Hz modulation sequence. In the plasma, the probing beam will be scattered off fluctuations primarily due to the dynamics of the ions. Seven fixed receiver mirrors will pick up scattered radiation (the CTS signal) from seven measurement volumes along the probe beam covering the cross section of the plasma. The diagnostic is planned to provide a temporal resolution of ~100 ms and a spatial resolution of ~a/4 in the core and ~a/20 near the plasma edge where a = 2.0 m is the nominal minor radius of ITER. The front-end quasi-optics will be installed in an equatorial port plug (EPP#12). A particular challenge will be to pass the probing beam through the fundamental electron cyclotron resonance, which is located in the port plug (R=10.3 m) for the nominal magnetic field Bt = 5.3 T. Hence, particular mitigation actions against arcing have to be applied. The status of the design and specific challenges will be discussed.
first_indexed 2024-12-17T21:48:23Z
format Article
id doaj.art-3a1a56e4de024499ae62f81211dfc0de
institution Directory Open Access Journal
issn 2100-014X
language English
last_indexed 2024-12-17T21:48:23Z
publishDate 2019-01-01
publisher EDP Sciences
record_format Article
series EPJ Web of Conferences
spelling doaj.art-3a1a56e4de024499ae62f81211dfc0de2022-12-21T21:31:24ZengEDP SciencesEPJ Web of Conferences2100-014X2019-01-012030300210.1051/epjconf/201920303002epjconf_ec2018_03002Design and development of the ITER CTS diagnosticKorsholm Søren B.Gonçalves BrunoGutierrez Heidi E.Henriques ElsaInfante VirginiaJensen ThomasJessen MartinKlinkby Esben B.Larsen Axel W.Leipold FrankLopes AndréLuis RaulNaulin VolkerNielsen Stefan K.Nonbøl ErikRasmussen JesperSalewski MirkoStejner MortenTaormina AriannaVale AlbertoVidal CatarinaSanchez LauraBallester Raul M.Udintsev VictorThe Collective Thomson Scattering (CTS) diagnostic will be a primary diagnostic for measuring the dynamics of the confined fusion born alpha particles in ITER and will be the only diagnostic for alphas below 1.7 MeV [1]. The probe beam of the CTS diagnostic comes from a 60 GHz 1 MW gyrotron operated in a ~100 Hz modulation sequence. In the plasma, the probing beam will be scattered off fluctuations primarily due to the dynamics of the ions. Seven fixed receiver mirrors will pick up scattered radiation (the CTS signal) from seven measurement volumes along the probe beam covering the cross section of the plasma. The diagnostic is planned to provide a temporal resolution of ~100 ms and a spatial resolution of ~a/4 in the core and ~a/20 near the plasma edge where a = 2.0 m is the nominal minor radius of ITER. The front-end quasi-optics will be installed in an equatorial port plug (EPP#12). A particular challenge will be to pass the probing beam through the fundamental electron cyclotron resonance, which is located in the port plug (R=10.3 m) for the nominal magnetic field Bt = 5.3 T. Hence, particular mitigation actions against arcing have to be applied. The status of the design and specific challenges will be discussed.https://www.epj-conferences.org/articles/epjconf/pdf/2019/08/epjconf_ec2018_03002.pdf
spellingShingle Korsholm Søren B.
Gonçalves Bruno
Gutierrez Heidi E.
Henriques Elsa
Infante Virginia
Jensen Thomas
Jessen Martin
Klinkby Esben B.
Larsen Axel W.
Leipold Frank
Lopes André
Luis Raul
Naulin Volker
Nielsen Stefan K.
Nonbøl Erik
Rasmussen Jesper
Salewski Mirko
Stejner Morten
Taormina Arianna
Vale Alberto
Vidal Catarina
Sanchez Laura
Ballester Raul M.
Udintsev Victor
Design and development of the ITER CTS diagnostic
EPJ Web of Conferences
title Design and development of the ITER CTS diagnostic
title_full Design and development of the ITER CTS diagnostic
title_fullStr Design and development of the ITER CTS diagnostic
title_full_unstemmed Design and development of the ITER CTS diagnostic
title_short Design and development of the ITER CTS diagnostic
title_sort design and development of the iter cts diagnostic
url https://www.epj-conferences.org/articles/epjconf/pdf/2019/08/epjconf_ec2018_03002.pdf
work_keys_str_mv AT korsholmsørenb designanddevelopmentoftheiterctsdiagnostic
AT goncalvesbruno designanddevelopmentoftheiterctsdiagnostic
AT gutierrezheidie designanddevelopmentoftheiterctsdiagnostic
AT henriqueselsa designanddevelopmentoftheiterctsdiagnostic
AT infantevirginia designanddevelopmentoftheiterctsdiagnostic
AT jensenthomas designanddevelopmentoftheiterctsdiagnostic
AT jessenmartin designanddevelopmentoftheiterctsdiagnostic
AT klinkbyesbenb designanddevelopmentoftheiterctsdiagnostic
AT larsenaxelw designanddevelopmentoftheiterctsdiagnostic
AT leipoldfrank designanddevelopmentoftheiterctsdiagnostic
AT lopesandre designanddevelopmentoftheiterctsdiagnostic
AT luisraul designanddevelopmentoftheiterctsdiagnostic
AT naulinvolker designanddevelopmentoftheiterctsdiagnostic
AT nielsenstefank designanddevelopmentoftheiterctsdiagnostic
AT nonbølerik designanddevelopmentoftheiterctsdiagnostic
AT rasmussenjesper designanddevelopmentoftheiterctsdiagnostic
AT salewskimirko designanddevelopmentoftheiterctsdiagnostic
AT stejnermorten designanddevelopmentoftheiterctsdiagnostic
AT taorminaarianna designanddevelopmentoftheiterctsdiagnostic
AT valealberto designanddevelopmentoftheiterctsdiagnostic
AT vidalcatarina designanddevelopmentoftheiterctsdiagnostic
AT sanchezlaura designanddevelopmentoftheiterctsdiagnostic
AT ballesterraulm designanddevelopmentoftheiterctsdiagnostic
AT udintsevvictor designanddevelopmentoftheiterctsdiagnostic