Characterization of the high temperature oxidation behavior of iron based alloys used as exhaust manifolds

Nowadays engine capacities of vehicles spread in a wide range due to different vehicle power demands. Power density of engines affects exhaust gas and therefore exhaust gas temperature varies from 650 °C to 1000 °C in exhaust manifolds. Depending on the exhaust gas temperature, different types of ir...

Full description

Bibliographic Details
Main Authors: Çelik G. Aktaş, Kahrıman Fulya, Atapek Ş. Hakan, Polat Şeyda
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201818802001
Description
Summary:Nowadays engine capacities of vehicles spread in a wide range due to different vehicle power demands. Power density of engines affects exhaust gas and therefore exhaust gas temperature varies from 650 °C to 1000 °C in exhaust manifolds. Depending on the exhaust gas temperature, different types of iron based alloys are used as manifold materials such as ferritic ductile cast irons (GGG40, SiMo), austenitic ductile cast irons (Ni-resist D5S), ferritic cast stainless steels (ACIHK30, AISI 409) and austenitic cast stainless steels (CF8C). In this study high temperature oxidation behavior of different cast alloys used as exhaust manifold materials like, (i) GGG40 ferritic ductile cast iron, (ii) SiMo ferritic ductile cast iron (iii) AISI 409 ferritic cast stainless steel and (iv) CF8C austenitic cast stainless steel, were investigated.
ISSN:2261-236X