Disrupted sleep without sleep curtailment induces sleepiness and cognitive dysfunction via the tumor necrosis factor-α pathway
<p>Abstract</p> <p>Background</p> <p>Sleepiness and cognitive dysfunction are recognized as prominent consequences of sleep deprivation. Experimentally induced short-term sleep fragmentation, even in the absence of any reductions in total sleep duration, will lead to th...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2012-05-01
|
Series: | Journal of Neuroinflammation |
Subjects: | |
Online Access: | http://www.jneuroinflammation.com/content/9/1/91 |
_version_ | 1818835464099987456 |
---|---|
author | Ramesh Vijay Nair Deepti Zhang Shelley X L Hakim Fahed Kaushal Navita Kayali Foaz Wang Yang Li Richard C Carreras Alba Gozal David |
author_facet | Ramesh Vijay Nair Deepti Zhang Shelley X L Hakim Fahed Kaushal Navita Kayali Foaz Wang Yang Li Richard C Carreras Alba Gozal David |
author_sort | Ramesh Vijay |
collection | DOAJ |
description | <p>Abstract</p> <p>Background</p> <p>Sleepiness and cognitive dysfunction are recognized as prominent consequences of sleep deprivation. Experimentally induced short-term sleep fragmentation, even in the absence of any reductions in total sleep duration, will lead to the emergence of excessive daytime sleepiness and cognitive impairments in humans. Tumor necrosis factor (TNF)-α has important regulatory effects on sleep, and seems to play a role in the occurrence of excessive daytime sleepiness in children who have disrupted sleep as a result of obstructive sleep apnea, a condition associated with prominent sleep fragmentation. The aim of this study was to examine role of the TNF-α pathway after long-term sleep fragmentation in mice.</p> <p>Methods</p> <p>The effect of chronic sleep fragmentation during the sleep-predominant period on sleep architecture, sleep latency, cognitive function, behavior, and inflammatory markers was assessed in C57BL/6 J and in mice lacking the TNF-α receptor (double knockout mice). In addition, we also assessed the above parameters in C57BL/6 J mice after injection of a TNF-α neutralizing antibody.</p> <p>Results</p> <p>Mice subjected to chronic sleep fragmentation had preserved sleep duration, sleep state distribution, and cumulative delta frequency power, but also exhibited excessive sleepiness, altered cognitive abilities and mood correlates, reduced cyclic AMP response element-binding protein phosphorylation and transcriptional activity, and increased phosphodiesterase-4 expression, in the absence of AMP kinase-α phosphorylation and ATP changes. Selective increases in cortical expression of TNF-α primarily circumscribed to neurons emerged. Consequently, sleepiness and cognitive dysfunction were absent in TNF-α double receptor knockout mice subjected to sleep fragmentation, and similarly, treatment with a TNF-α neutralizing antibody abrogated sleep fragmentation-induced learning deficits and increases in sleep propensity.</p> <p>Conclusions</p> <p>Taken together, our findings show that recurrent arousals during sleep, as happens during sleep apnea, induce excessive sleepiness via activation of inflammatory mechanisms, and more specifically TNF-α-dependent pathways, despite preserved sleep duration.</p> |
first_indexed | 2024-12-19T02:51:07Z |
format | Article |
id | doaj.art-3a2226a6fc634450955b015a93b4547e |
institution | Directory Open Access Journal |
issn | 1742-2094 |
language | English |
last_indexed | 2024-12-19T02:51:07Z |
publishDate | 2012-05-01 |
publisher | BMC |
record_format | Article |
series | Journal of Neuroinflammation |
spelling | doaj.art-3a2226a6fc634450955b015a93b4547e2022-12-21T20:38:37ZengBMCJournal of Neuroinflammation1742-20942012-05-01919110.1186/1742-2094-9-91Disrupted sleep without sleep curtailment induces sleepiness and cognitive dysfunction via the tumor necrosis factor-α pathwayRamesh VijayNair DeeptiZhang Shelley X LHakim FahedKaushal NavitaKayali FoazWang YangLi Richard CCarreras AlbaGozal David<p>Abstract</p> <p>Background</p> <p>Sleepiness and cognitive dysfunction are recognized as prominent consequences of sleep deprivation. Experimentally induced short-term sleep fragmentation, even in the absence of any reductions in total sleep duration, will lead to the emergence of excessive daytime sleepiness and cognitive impairments in humans. Tumor necrosis factor (TNF)-α has important regulatory effects on sleep, and seems to play a role in the occurrence of excessive daytime sleepiness in children who have disrupted sleep as a result of obstructive sleep apnea, a condition associated with prominent sleep fragmentation. The aim of this study was to examine role of the TNF-α pathway after long-term sleep fragmentation in mice.</p> <p>Methods</p> <p>The effect of chronic sleep fragmentation during the sleep-predominant period on sleep architecture, sleep latency, cognitive function, behavior, and inflammatory markers was assessed in C57BL/6 J and in mice lacking the TNF-α receptor (double knockout mice). In addition, we also assessed the above parameters in C57BL/6 J mice after injection of a TNF-α neutralizing antibody.</p> <p>Results</p> <p>Mice subjected to chronic sleep fragmentation had preserved sleep duration, sleep state distribution, and cumulative delta frequency power, but also exhibited excessive sleepiness, altered cognitive abilities and mood correlates, reduced cyclic AMP response element-binding protein phosphorylation and transcriptional activity, and increased phosphodiesterase-4 expression, in the absence of AMP kinase-α phosphorylation and ATP changes. Selective increases in cortical expression of TNF-α primarily circumscribed to neurons emerged. Consequently, sleepiness and cognitive dysfunction were absent in TNF-α double receptor knockout mice subjected to sleep fragmentation, and similarly, treatment with a TNF-α neutralizing antibody abrogated sleep fragmentation-induced learning deficits and increases in sleep propensity.</p> <p>Conclusions</p> <p>Taken together, our findings show that recurrent arousals during sleep, as happens during sleep apnea, induce excessive sleepiness via activation of inflammatory mechanisms, and more specifically TNF-α-dependent pathways, despite preserved sleep duration.</p>http://www.jneuroinflammation.com/content/9/1/91TNF-αSleep fragmentationNeurocognitive impairmentsSleep apneaATP |
spellingShingle | Ramesh Vijay Nair Deepti Zhang Shelley X L Hakim Fahed Kaushal Navita Kayali Foaz Wang Yang Li Richard C Carreras Alba Gozal David Disrupted sleep without sleep curtailment induces sleepiness and cognitive dysfunction via the tumor necrosis factor-α pathway Journal of Neuroinflammation TNF-α Sleep fragmentation Neurocognitive impairments Sleep apnea ATP |
title | Disrupted sleep without sleep curtailment induces sleepiness and cognitive dysfunction via the tumor necrosis factor-α pathway |
title_full | Disrupted sleep without sleep curtailment induces sleepiness and cognitive dysfunction via the tumor necrosis factor-α pathway |
title_fullStr | Disrupted sleep without sleep curtailment induces sleepiness and cognitive dysfunction via the tumor necrosis factor-α pathway |
title_full_unstemmed | Disrupted sleep without sleep curtailment induces sleepiness and cognitive dysfunction via the tumor necrosis factor-α pathway |
title_short | Disrupted sleep without sleep curtailment induces sleepiness and cognitive dysfunction via the tumor necrosis factor-α pathway |
title_sort | disrupted sleep without sleep curtailment induces sleepiness and cognitive dysfunction via the tumor necrosis factor α pathway |
topic | TNF-α Sleep fragmentation Neurocognitive impairments Sleep apnea ATP |
url | http://www.jneuroinflammation.com/content/9/1/91 |
work_keys_str_mv | AT rameshvijay disruptedsleepwithoutsleepcurtailmentinducessleepinessandcognitivedysfunctionviathetumornecrosisfactorapathway AT nairdeepti disruptedsleepwithoutsleepcurtailmentinducessleepinessandcognitivedysfunctionviathetumornecrosisfactorapathway AT zhangshelleyxl disruptedsleepwithoutsleepcurtailmentinducessleepinessandcognitivedysfunctionviathetumornecrosisfactorapathway AT hakimfahed disruptedsleepwithoutsleepcurtailmentinducessleepinessandcognitivedysfunctionviathetumornecrosisfactorapathway AT kaushalnavita disruptedsleepwithoutsleepcurtailmentinducessleepinessandcognitivedysfunctionviathetumornecrosisfactorapathway AT kayalifoaz disruptedsleepwithoutsleepcurtailmentinducessleepinessandcognitivedysfunctionviathetumornecrosisfactorapathway AT wangyang disruptedsleepwithoutsleepcurtailmentinducessleepinessandcognitivedysfunctionviathetumornecrosisfactorapathway AT lirichardc disruptedsleepwithoutsleepcurtailmentinducessleepinessandcognitivedysfunctionviathetumornecrosisfactorapathway AT carrerasalba disruptedsleepwithoutsleepcurtailmentinducessleepinessandcognitivedysfunctionviathetumornecrosisfactorapathway AT gozaldavid disruptedsleepwithoutsleepcurtailmentinducessleepinessandcognitivedysfunctionviathetumornecrosisfactorapathway |